

Murray Valley encephalitis virus

David W Smith

PathWest Laboratory Medicine WA The University of Western Australia

Encephalitic arboviruses

Alphaviruses:

- Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, California encephalitis virus
- Rare cases of encephalitis due to chikungunya virus

Flaviviruses:

- Japanese encephalitis virus (JEV), Murray Valley encephalitis virus (MVEV), West Nile virus (WNV), Kunjin strain of WNV (KUNV/WNV), St Louis encephalitis virus, tick-borne encephalitis virus, louping ill virus, Kyansanur Forest disease virus
- Phleboviruses:
 - Rift Valley fever virus
- Bunyaviruses
 - California encephalitis group

MVE/Kunjin (Australian) Encephalitis 1917 to 1999

Human MVEV 1975-2010

MVEV/KUNV illness in Australia since 1974

MVEV cases in relation to rainfall data: Note that rainfall may not exactly match groundwater/flooding patterns

Flaviviruses: Who gets infected and who gets encephalitis?

- Who gets infected?
 - Populations in enzootic/endemic areas with regular exposure
 - Many infected in childhood or early adulthood
 - Disease in older adults is unusual, e.g JEV in SE Asia, MVEV in the Kimberley
 - People in endemic areas who are not regularly exposed & people in epidemic areas
 - All susceptible, risk depends on exposure
- Who get encephalitis?
 - MVEV 1:200 to 1:1000
 - This may be explained by partial protection due to previous flavivirus exposure in the indigenous population, age related differences, different genetic susceptibility
 - Disease more likely to be under-diagnosed in developing countries

MVEV encephalitis

Maintained in a waterbird-mosquito (*Culex annulirostris*) cycle

Case-to-infection ratio

1:1000 to 1:100

Presentation

- May have nonspecific febrile illness +/- headache
- Anorexia, malaise, fever, vomiting
- Adults headache, altered mental state, occasional fitting
- Children fitting

Course

- Variable progression. Involves central cerebral structures, brainstem, spinal cord.
- No specific treatment

Clinical presentations of infection with encephalitic flaviviruses

- Asymptomatic
- Nonspecific febrile illness, usually with headache
- Fever with headache
- Meningitis without encephalitis
- Encephalomyelitis
 - Abortive
 - Classical
 - Acute flaccid paralysis prior to encephalitis (polio-like illness)
 - Up to 1/3 of classical cases also have AFP, but associated with severe neurological diseases
 - Guillain-Barré syndrome (WNV)

What happens when you get it?

- Characteristic features relate to involvement of central cerebral structures including the midbrain, basal ganglia, brainstem and medial temporal lobes
- Cerebellum and upper spinal cord may be affected, particularly the anterior horn cells of the latter.

Clinical manifestations

- coma, respiratory failure and flaccid paralysis
- cranial nerve palsies, tremor, cogwheel rigidity, cerebellar ataxia and upper limb weakness
- late onset parkinsonism and neuropsychiatric disease

Clinical and radiological predictors of outcome for Murray Valley encephalitis

- Ten cases hospitalised in WA 2008-2011
- All patients acquired infection between March and May, the age range was 2-68 years
- Two children, six males
- Nine infected in WA, one in NSW
- Nine encephalitic, one non-encephalitic
- Investigations
 - All patients developed a raised C-reactive protein, and most developed acute liver injury, neutrophilia and thrombocytosis.
 - MRI

Clinical and radiological predictors of outcome for Murray Valley encephalitis: MRI findings

- CT scans rarely showed any abnormalities
- MRI findings within 1 week of onset
 - All patients with encephalitis developed cerebral peduncle involvement on early magnetic resonance imaging (MRI).
 - The absence of limbic system MRI hyperintensity, with or without leptomeningeal enhancement, predicted a better neurological outcome
 - Those with widespread abnormalities involving the limbic system and cerebral cortex or the cerebellum had devastating neurological outcomes.
- Later MRI scans showed destruction of the thalamus and basal ganglia, cortex or cerebellum.

MRI

Outcome of MVE encephalitis: WA/NT 1978-2011

	Number	Mortality	Sequelae	Normal
Adults	38	6 (16%)	17 (45%)	15 (39%)
Children	27	6 (22%)	12 (44%)	9 (34%)

- Worst outcomes in adults over 50 years and children under 2 years
- Little evidence of improvement in survival or neurological sequelae since 1974
- Improving survival may increase number with severe neurological sequelae

MVEV encephalitis outcomes

Diagnosing flavivirus encephalitis

- CSF shows variable pleocytosis and variable proportion of neutrophils. Usually mildly elevated protein, normal glucose.
- Detection of virus by culture is rare in premortem samples (CSF or blood)
- Detection of virus by PCR is uncommon in premortem samples (CSF or blood) for most flaviviruses
- Detection of IgM in CSF is helpful and diagnostic of flavivirus encephalitis, but only found in ~75%.
- Detection of IgM in serum may be helpful but does not necessarily mean recent infection and may not indicate which flavivirus
- Rising levels of IgG between acute and convalescent samples is very helpful in confirming recent flavivirus infection, but may not tell you which one it is.
 - Species specific serology should be performed neutrlaistion or epitope-blocking EIA
- Patients with second flavivirus infections, e.g. MVEV infection in someone with past Kunjin infection
 - IgM may be absent
 - Early IgG response may be directed at the previously infecting flavivirus
- REMEMBER
 - Serological diagnosis can be tricky
 - You never have enough CSF!

PCR for MVEV in CSF

- Target is the envelope protein sequence
- Nested in-house (plus tandem nested real-time 2008 onwards)
- 20 samples tested from 17 patients with known date of onset of illness
 - 3 positive
- One additional patient had positive PCR on postmortem brain tissues

MVE encephalitis 2000-2011 CSF IgM by IFA

18 patients, 23 samples Overall, 13/18 (72%) of patients had IgM detectable in CSF

Treatment of flavivirus encephalitis

Supportive care the only current recommendation for treatment

Corticosteroids

- Dexamethasone no benefit against JEV encephalitis in double-blind placebocontrolled trial
- Glucocorticoids increase WNV viraemia in dogs
- Isoquinolone compounds are effective in vitro

Interferon

 Recombinant interferon-α promising in open trial, but no benefit for JEV encephalitis in a placebo controlled double blind trial

Ribavirin

- Shown to inhibit WNV in vitro, but no benefit in WNV patients treated during 2000 outbreak in Israel or for JEV encephalitis in a placebo controlled trial in India.
- Does not effectively cross the blood-brain barrier

Intravenous immunoglobulin (IVIG) therapy

- Monoclonal antibodies are apparently effective in animal models
- Case reports and mouse studies suggest IVIG containing high titres of anti-WNV antibodies improves WNV encephalitis outcomes, particularly in immunocompromised patients
- Phase I/II clinical trials of WNV-specific IVIG have recently been completed in the US, but results are yet to be reported.

Knox J et al. Med J Aust 2012; 196 (5): 322-326.

Prevention

- Risk monitoring and public warnings
 - Travel to areas with activity
 - Mosquito avoidance

Vaccine?

What's needed to get human infections?

Risk condition	Monitoring the risk	
Weather conditions - Needs to have heavy rains and flooding, and warmth	Meteorological data, satellite data	
Vectors: Needs mosquitoes – Culex annulirostris	Mosquito trapping*	
MVEV present in the mosquitoes	Testing trapped mosquitoes*	
Amplifying hosts: Mainly water birds that have not been previously exposed	Nil	
Infected mosquitoes biting humans	Sentinel chicken monitoring	
People getting exposed to infected mosquitoes: Possible dose effect – ? need lots of bites to get encephalitis	Clinical cases	

^{*} Often not feasible during the wet season due to limited access

Sentinel chickens

Sentinel chicken MVEV seroconversions and human cases Jan 2009- May 2012

Data from Arbovirus Surveillance and Research Laboratory, University of Western Australia

If people act on warnings, could they avoid infection?

- 50 yo female regular mosquito exposure in evenings
- 41 yo female regular night fishing
- 61 yo male camping by roadside
- 29 yo male outdoor job
- 25 yo male regular evening outdoor activities
- 25 yo male fishing and camping
- 67y yo female camping at beach and other locations
- 2 yo female many mosquito bites

MVEV vaccination

- No specific MVEV vaccine available
- Current flavivirus vaccines: JEV, TBEV, (WNV), (DENV)
- JEV most closely related to MVEV
 - Inactivated JEV vaccines- enhance MVEV infection in mouse model
 - Chimeric vaccine protects against JEV in mice would it do the same in humans?

Acknowledgements

WA

PathWest/UWA: David Speers, Ian Sampson, Tony Jones, Peter Boan, Karen Sagenschneider, Gerry Harnett, Glenys Chidlow, David Williams, Cheryl Johansen, staff of the Arbovirus Surveillance and Research Laboratory

DoH: Gary Dowse, Paul Armstrong, Mike Lindsay, Sue Harrington, Heather Lyttle Others: Jim Flexman, Chris Blyth, Nirooshan Rooban, Edward Raby, Ganesh Ramaseshan, Susan Benson, John Dyer, Moira Wilson, Paul Ingram, Laurens Manning

NT

Jim Burrow, Bart Currie, Peter Markey, Peter Whelan

Qld

Roy Hall

NSW

Linda Hueston, Keith Eastwood

SA

Peter Blumbergs

Vic

Rod Moran, Mike Catton, Jack Richards, John Mackenzie

Others

CDNA, NAMAC members, physicians involved in patient care