Murray Valley encephalitis virus

David W Smith

PathWest Laboratory Medicine WA
The University of Western Australia
Encephalitic arboviruses

- **Alphaviruses:**
 - Eastern equine encephalitis virus, Western equine encephalitis virus, Venezuelan equine encephalitis virus, California encephalitis virus
 - Rare cases of encephalitis due to chikungunya virus

- **Flaviviruses:**
 - Japanese encephalitis virus (JEV), Murray Valley encephalitis virus (MVEV), West Nile virus (WNV), Kunjin strain of WNV (KUNV/WNV), St Louis encephalitis virus, tick-borne encephalitis virus, louping ill virus, Kyansanur Forest disease virus

- **Phleboviruses:**
 - Rift Valley fever virus

- **Bunyaviruses**
 - California encephalitis group
MVE/Kunjin (Australian) Encephalitis
1917 to 1999

- Murray Valley/Kunjin encephalitis
 1975-1999

- Australian X Disease
 1917-1925

- Murray Valley/KUN encephalitis
 1950-1974
Human MVEV 1975-2010

Mainly the 2000 season
MVEV/KUNV illness in Australia since 1974
MVEV cases in relation to rainfall data: Note that rainfall may not exactly match groundwater/flooding patterns.
Human MVEV & KUNV infections 2011

Circle = MVEV. Star = KUNV. Open circle = not lab confirmed. Red outline = encephalitis. White outline non-encephalitic.
Flaviviruses: Who gets infected and who gets encephalitis?

• Who gets infected?
 – Populations in enzootic/endemic areas with regular exposure
 • Many infected in childhood or early adulthood
 • Disease in older adults is unusual, e.g. JEV in SE Asia, MVEV in the Kimberley
 – People in endemic areas who are not regularly exposed & people in epidemic areas
 • All susceptible, risk depends on exposure

• Who get encephalitis?
 – MVEV 1:200 to 1:1000
 – This may be explained by partial protection due to previous flavivirus exposure in the indigenous population, age related differences, different genetic susceptibility
 – Disease more likely to be under-diagnosed in developing countries
MVEV encephalitis

Maintained in a waterbird-mosquito (*Culex annulirostris*) cycle

Case-to-infection ratio
• 1:1000 to 1:100

Presentation
• May have nonspecific febrile illness +/- headache
• Anorexia, malaise, fever, vomiting
• Adults – headache, altered mental state, occasional fitting
• Children - fitting

Course
• Variable progression. Involves central cerebral structures, brainstem, spinal cord.
• No specific treatment
Clinical presentations of infection with encephalitic flaviviruses

- Asymptomatic
- Nonspecific febrile illness, usually with headache
- Fever with headache
- Meningitis without encephalitis
- Encephalomyelitis
 - Abortive
 - Classical
 - Acute flaccid paralysis prior to encephalitis (polio-like illness)
 - Up to 1/3 of classical cases also have AFP, but associated with severe neurological diseases
 - Guillain-Barré syndrome (WNV)
What happens when you get it?

- Characteristic features relate to involvement of central cerebral structures including the midbrain, basal ganglia, brainstem and medial temporal lobes.
- Cerebellum and upper spinal cord may be affected, particularly the anterior horn cells of the latter.

- Clinical manifestations
 - coma, respiratory failure and flaccid paralysis
 - cranial nerve palsies, tremor, cogwheel rigidity, cerebellar ataxia and upper limb weakness
 - late onset parkinsonism and neuropsychiatric disease
Clinical and radiological predictors of outcome for Murray Valley encephalitis

- Ten cases hospitalised in WA 2008-2011
- All patients acquired infection between March and May, the age range was 2-68 years
- Two children, six males
- Nine infected in WA, one in NSW
- Nine encephalitic, one non-encephalitic
- Investigations
 - All patients developed a raised C-reactive protein, and most developed acute liver injury, neutrophilia and thrombocytosis.
 - MRI
Clinical and radiological predictors of outcome for Murray Valley encephalitis: MRI findings

- CT scans rarely showed any abnormalities
- MRI findings within 1 week of onset
 - All patients with encephalitis developed cerebral peduncle involvement on early magnetic resonance imaging (MRI).
 - The absence of limbic system MRI hyperintensity, with or without leptomeningeal enhancement, predicted a better neurological outcome.
 - Those with widespread abnormalities involving the limbic system and cerebral cortex or the cerebellum had devastating neurological outcomes.
- Later MRI scans showed destruction of the thalamus and basal ganglia, cortex or cerebellum.

MRI

Male
61yo
2011

Male
29yo
2011

Male
26yo
2002
Outcome of MVE encephalitis: WA/NT 1978-2011

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Mortality</th>
<th>Sequelae</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>38</td>
<td>6 (16%)</td>
<td>17 (45%)</td>
<td>15 (39%)</td>
</tr>
<tr>
<td>Children</td>
<td>27</td>
<td>6 (22%)</td>
<td>12 (44%)</td>
<td>9 (34%)</td>
</tr>
</tbody>
</table>

- Worst outcomes in adults over 50 years and children under 2 years
- Little evidence of improvement in survival or neurological sequelae since 1974
- Improving survival may increase number with severe neurological sequelae
MVEV encephalitis outcomes

![Bar chart showing the number of patients for MVEV encephalitis outcomes by time period and age group.]

- Murray Valley 1951
- Murray Valley 1974
- WA/NT 1978-93
- WA/NT 1978-2000

Number of patients

<table>
<thead>
<tr>
<th>Time Period</th>
<th>Children</th>
<th>Adults</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1951</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978-93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1978-2000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Diagnosing flavivirus encephalitis

- CSF shows variable pleocytosis and variable proportion of neutrophils. Usually mildly elevated protein, normal glucose.
- Detection of virus by culture is rare in premortem samples (CSF or blood).
- Detection of virus by PCR is uncommon in premortem samples (CSF or blood) for most flaviviruses.
- Detection of IgM in CSF is helpful and diagnostic of flavivirus encephalitis, but only found in ~75%.
- Detection of IgM in serum may be helpful but does not necessarily mean recent infection and may not indicate which flavivirus.
- Rising levels of IgG between acute and convalescent samples is very helpful in confirming recent flavivirus infection, but may not tell you which one it is.
 - Species specific serology should be performed – neutralisation or epitope-blocking EIA.
- Patients with second flavivirus infections, e.g. MVEV infection in someone with past Kunjin infection.
 - IgM may be absent
 - Early IgG response may be directed at the previously infecting flavivirus
- REMEMBER
 - Serological diagnosis can be tricky
 - You never have enough CSF!
PCR for MVEV in CSF

- Target is the envelope protein sequence
- Nested in-house (plus tandem nested real-time 2008 onwards)
- 20 samples tested from 17 patients with known date of onset of illness
 - 3 positive
- One additional patient had positive PCR on postmortem brain tissues
18 patients, 23 samples
Overall, 13/18 (72%) of patients had IgM detectable in CSF
Treatment of flavivirus encephalitis

• Supportive care the only current recommendation for treatment
• Corticosteroids
 – Dexamethasone - no benefit against JEV encephalitis in double-blind placebo-controlled trial
 – Glucocorticoids increase WNV viraemia in dogs
 – Isoquinolone compounds are effective in vitro
• Interferon
 – Recombinant interferon-α promising in open trial, but no benefit for JEV encephalitis in a placebo controlled double blind trial
• Ribavirin
 – Shown to inhibit WNV in vitro, but no benefit in WNV patients treated during 2000 outbreak in Israel or for JEV encephalitis in a placebo controlled trial in India.
 – Does not effectively cross the blood–brain barrier
• Intravenous immunoglobulin (IVIG) therapy
 – Monoclonal antibodies are apparently effective in animal models
 – Case reports and mouse studies suggest IVIG containing high titres of anti-WNV antibodies improves WNV encephalitis outcomes, particularly in immunocompromised patients
 – Phase I/II clinical trials of WNV-specific IVIG have recently been completed in the US, but results are yet to be reported.

Prevention

• Risk monitoring and public warnings
 – Travel to areas with activity
 – Mosquito avoidance

• Vaccine?
What’s needed to get human infections?

<table>
<thead>
<tr>
<th>Risk condition</th>
<th>Monitoring the risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weather conditions - Needs to have heavy rains and flooding, and warmth</td>
<td>Meteorological data, satellite data</td>
</tr>
<tr>
<td>Vectors: Needs mosquitoes – Culex annulirostris</td>
<td>Mosquito trapping*</td>
</tr>
<tr>
<td>MVEV present in the mosquitoes</td>
<td>Testing trapped mosquitoes*</td>
</tr>
<tr>
<td>Amplifying hosts: Mainly water birds that have not been previously exposed</td>
<td>Nil</td>
</tr>
<tr>
<td>Infected mosquitoes biting humans</td>
<td>Sentinel chicken monitoring</td>
</tr>
<tr>
<td>People getting exposed to infected mosquitoes: Possible dose effect – ? need lots of bites to get encephalitis</td>
<td>Clinical cases</td>
</tr>
</tbody>
</table>

* Often not feasible during the wet season due to limited access
Sentinel chickens
Sentinel chicken MVEV seroconversions and human cases Jan 2009- May 2012

Data from Arbovirus Surveillance and Research Laboratory, University of Western Australia
If people act on warnings, could they avoid infection?

- 50 yo female – regular mosquito exposure in evenings
- 41 yo female – regular night fishing
- 61 yo male – camping by roadside
- 29 yo male – outdoor job
- 25 yo male – regular evening outdoor activities
- 25 yo male – fishing and camping
- 67y yo female – camping at beach and other locations
- 2 yo female – many mosquito bites
MVEV vaccination

- No specific MVEV vaccine available
- Current flavivirus vaccines: JEV, TBEV, (WNV), (DENV)
- JEV most closely related to MVEV
 - Inactivated JEV vaccines- enhance MVEV infection in mouse model
 - Chimeric vaccine protects against JEV in mice – would it do the same in humans?
Acknowledgements

WA
PathWest/UWA: David Speers, Ian Sampson, Tony Jones, Peter Boan, Karen Sagenschneider, Gerry Harnett, Glenys Chidlow, David Williams, Cheryl Johansen, staff of the Arbovirus Surveillance and Research Laboratory
DoH: Gary Dowse, Paul Armstrong, Mike Lindsay, Sue Harrington, Heather Lyttle
Others: Jim Flexman, Chris Blyth, Nirooshan Rooban, Edward Raby, Ganesh Ramaseshan, Susan Benson, John Dyer, Moira Wilson, Paul Ingram, Laurens Manning

NT
Jim Burrow, Bart Currie, Peter Markey, Peter Whelan

Qld
Roy Hall

NSW
Linda Hueston, Keith Eastwood

SA
Peter Blumbergs

Vic
Rod Moran, Mike Catton, Jack Richards, John Mackenzie

Others
CDNA, NAMAC members, physicians involved in patient care