

Hepatitis E – virus and vaccination

(virology, epidemiology, diagnostics and vaccines)

A/Prof David Anderson

Macfarlane Burnet Institute for Medical Research and Public Health

Melbourne, Australia

Hepatitis E virus

- Similarities and contrasts with hepatitis A virus
- The (unmet) need for reliable diagnostics
- Diagnostics Discovery and development
 - Antigens and antibodies
- Vaccines Current status

Hepatitis E virus and infection

- Acute, generally self-limiting
 - 25% mortality in 3rd trimester of pregnancy
- Most common in developing nations
- Strain differences

Physical characteristics

HAV

- Naked, 27-30 nm particles
- ♦ (+) RNA, 7.5 kb
- 1 polyprotein
- Three capsid proteins (VP1, VP2, VP3)
- Enteric transmission

HEV

- Naked, 32-34 nm particles
- (+) RNA, 7.2 kb
- 3 primary proteins
- One capsid protein (PORF2)
- Enteric transmission

Geographic distribution of human HEV

(CDC data)

Swine HEV - Meng et al, 1997, NIH

- Unique HEV sequence
- Similar strain isolated from patients in USA (Schlauder et al, 1998)

Many other HEV-related viruses....

Disease burden

HAV

- Very common in developing world, but low morbidity
- Common in developed countries with wide socioeconomic gaps
- Foodborne outbreaks
 - International trade in fresh foods, eg strawberries, lettuces from Mexico-USA

HEV

- Common in much of developing world; high morbidity
- Rare in developed countries*
 - Travellers, zoonotic
- Foodborne and vectors in developed countries
 - Consumption of raw liver and meat in Japan, swine HEV

Control of HEV - the role of diagnostics

- Effective vaccine should be available soon for developing countries (Hecolin; Xiamen Innovax Biotech Co Ltd)
 - GSK/Novavax vaccine passed Phase 3 in 2007, but not moving?
- Price and supply, duration of protection uncertain?
- Need to identify outbreaks/high incidence areas so that vaccine can be used, and water purification can be addressed
- Less concern about contact transmission (vs HAV)

Ideal diagnostics for HEV

- Inexpensive and robust (field use and developing countries)
- Sensitive and specific, in areas where there is high prevalence
- High positive predictive value in all countries, including low prevalence
- Rapid, Point of care (RPOC) ideal for developing countries

Serological responses to HAV and HEV

Months post infection

Diagnostic challenges

HAV

- Good antigen (virus), but expensive and difficult to make
- Good ELISAs, but expensive
- No rapid (RPOC) tests

HEV

- Variable antigens, easy to make
- Poor ELISAs (low sensitivity and/or specificity)
- No rapid (RPOC) tests

The unmet need for HEV diagnostics

- Genelabs IgG, IgM and Abbott IgG
- Highly variable sensitivity (≈60%) and sensitivity (≈80%) – not related to virus strain differences
- All based on ORF2 and ORF3 proteins expressed in *E. coli*

HEV Genome structure

HEV proteins - PORF2

- PORF2: major capsid protein
- Protective antibody response (Tsarev et al, 1994)

Antigenic structure of HEV

- Which antigens are appropriate for diagnosis and vaccine development?
- Which are the immunodominant epitopes?

Are these epitopes associated with the protective immune response?

Recombinant HEV antigens (1)

Genelabs HEV IgM ELISA

Blood donors HEV epidemic

Recombinant HEV antigens (2)

Hepatitis E reactivity - VLP ELISAs

Population	anti-HAV	anti-HEV
Intravenous drug users	66.4	23.0
Homosexual men	32.3	15.9
Blood donors (Baltimore, Sacramento, New York)	16.0	22.9

Mast et al, 1997

Recombinant HEV antigens (3)

Western blot of patient sera, ORF2.1 deletion series

Acute patient

Convalescent patient

Western blot of patient sera, ORF2.1 deletion series

Acute patient

Convalescent patient

Western blot of MAbs against the deletion series

MAb	Isotype	Epitope ^a	PORF2 IF ^b	Blocking, % ^c
4B5	lgG₁	394-414, conformational	++++	0-4
3B2	lgG₁	414-434	++++	0
1E6	IgG _{2b}	434-457	++++	28-38
4B2	lgG₁	ORF2.1, conformational	+	52-59
2E2	lgG₁	ORF2.1, conformational	+/-	60-76

Genelabs HEV IgM ELISA

Blood donors HEV epidemic

Burnet/Select HEV IgM ELISA

Blood donors HEV epidemic

Burnet/Select HEV IgM ELISA

Population (n)	IgM reactive (%)
Australian blood donors (400)	1 (0.25)
Disease state sera (other hepatitis) (84)	1 (1.2)
Nepal, prevalence (1126)	16 (1.4)
Nepal epidemic (94)	92 (97.9)

IgM anti-HEV: Sporadic hep, Nepal

Current status of HEV diagnostics

- HEV ELISAs based on ORF2.1 protein
 - MP Biomedicals, Asia-Pacific
 - IgM (diagnostics) ELISA 3.0
 - IgG (seroprevalence)
 - Antigen sandwich ELISA 4.0 (seroprevalence, zoonotic infections and seroprevalence)

Genelabs HEV IgM ELISA (1 - old assay)

MP Bio HEV IgM ELISA 3.0

Genelabs new HEV IgM ELISA

	ELISA
Population (n)	IgM Pos (%)
Healthy donors (95)	1 (1.1)
Other hepatitis (88)	3 (3.4)
Other disease (25)	1 (4.0)
Control total (208)	5 (97.6% spec)
Acute HEV (151)	149 (98.7% sens)

IgM anti-HEV: Sporadic hep, Nepal

Dr Iswar Shrestha, Kathmandu

Rapid Immunochromatographic Tests

HEV IgM Rapid Test: Reverse Flow Technology

-----NITROCELLULOSE MEMBRANE-----

Hepatitis E IgM rapid test

Genelabs Diagnostics (MP Biomedical) AssureTM

- licensed from Select Vaccines Ltd

Genelabs Assure™ HEV IgM rapid

	ELISA	Assure rapid
Population (n)	IgM Pos (%)	IgM Pos (%)
Healthy donors (95)	1 (1.1)	2 (2.1)
Other hepatitis (88)	3 (3.4)	0 (0)
Other disease (25)	1 (4.0)	1 (4.0) *RF
Control total (208)	5 (97.6% spec)	3 (98.6% spec)
Acute HEV (151)	149 (98.7% sens)	146 (96.7% sens)

Genelabs Assure™ - AFRIMS

Genelabs Assure™ - AFRIMS

	Assure rapid
Population (n)	IgM Pos (%)
Healthy donors (100)	0
Other hepatitis (175)	0
RF positive (26)	0
Acute HEV (200)	186 (93%)

Hepatitis E Rapid Assay in use in refugee camp in Chad

Photo courtesy Dr Greg Armstrong, CDC, Atlanta

MP Bio Assure™ HEV IgM rapid

Study	Sensitivity (n)	Specificity (n)
Nepal, PR China	96.7% (n=151)	98.6% (n=208)
Nepal, PRC, Indonesia	93.0% (n=200)	100% (n=275)
PR China*	97.0% (n=502)	96.5% (n=683)
Overall	96.0% (n=853)	97.7% (n=1166)

^{*} Two site clinical trial in China

Alternative HEV Diagnostics

Assay	Sensitivity	Specificity
Baculo 62K IgM (NIH)	Very high	Very high
Quantitative IgM (AFRIMS)	Very high	High
Mosaic IgM (CDC)	High	Very high
RT-PCR	High – very high	"Gold standard"

RT-PCR has been invaluable in understanding transmission of indigenous/zoonotic HEV in presumed non-endemic countries, BUT it is not really suitable for routine diagnosis

Molecular diagnostics for HEV

- Serology has specificity problems in low-incidence settings (eg zoonotic infections in W. Europe)
- Unsatisfactory PPV in low-incidence settings
- RT-PCR is "gold standard" for SPECIFICITY, but less sensitive than IgM serology in outbreak settings
 - Short duration and low titre of viral RNA in serum very labile?
- Balanced approach needed serology for returned travellers, RT-PCR for unexplained acute hepatitis?

Vaccines for hepatitis E (and A) viruses

Hepatitis A

- Inactivated virus from cell culture
- Antibody is protective (and easily measured)
- Many commercially available, including Twinrix
- Widespread use has had dramatic public health impact

Hepatitis E

- Recombinant protein from insect cell culture or E. coli
- Very effective in Phase 3 clinical trials, Nepal and China
- Have not been commercially released China imminent

1987-97 average incidence

2002 incidence

Rate per 100,000

> = 20

10 - 19

5 - 9

0 - 4

HEV vaccines

- GSK/Novavax HEV VLPs from insect cell culture
 - Successful Phase3 trials in Nepal 2005, published 2007
- Xiamen Biotech, Jiangsu Hecolin (HEV 239)
 - Successful Phase 3 trials in Jiangsu, 2010
 - » Zhu FC et al, Lancet 376(9744):895-902, 2010
 - » Licensed SFDA in Jan 2012
 - 30 μg *E. coli*-derived protein + Alum at 0, 1, 6 mo
 - Placebo: 15 cases HEV in 48,663 recipients
 - Vaccine: 0 cases HEV in 48,693 recipients
 - » Efficacy 72-100%

Recombinant HEV antigens (4)

BURNET INSTITUTE

Ian Potter Hepatitis Research Laboratory

Fan Li, Michaela Riddell, Joe Torresi Abigail Clements, Teresa Howard, Anne Healy, Katie Anders, Mary Garcia, Jocelyn Diaz, Simone van der Waarsenburg, David Anderson

Centre for International Health

Nick Crofts, Mike Toole, Chris Morgan

Pathogenesis and Clinical Research programme Suzanne Crowe, Robyn Lloyd, Helen Komodromou

Select Vaccines Ltd Martin Soust, Fan Li

GENELABS DIAGNOSTICS

Hsiao Ying Chen, Yang Lu, Priscilla Fong, Weiping Hu, Chee Poh Chia, Ming Guan

ELSEWHERE

Khin S.A. Myint, AFRIMS, Thailand Zhuang Hui, Beijing Medical University Stephen Locarnini, VIDRL Iswar Lal Shrestha, Siddhi Polyclinic Nepal Gillian Mearns, AMRAD ICT Alan Landay, Rush University