Bloody prisons: hepatitis B and C in the prison environment

The Hepatitis C Incidence & Transmission Study (HITS)

Professor Andrew Lloyd
Overview

• Background - hepatitis B & C and prisons
• HITS cohort
• Hepatitis C incidence and risk factors
• Hepatitis B incidence and immunisation uptake
Hepatitis B - key facts

- ~360 million chronically infected individuals
- ~5 million new cases of HBV annually
- Transmission amongst adults parenteral & sexual
- Injecting drug use (IDU) accounts for 45% Australian HBV infections
- Adult infection commonly results in clearance (95%); fulminant hepatitis in ~0.1-0.5%
- Australian HBsAg prevalence ~ 0.6-1.1%
- Highly effective vaccine, but uptake amongst IDUs poor
- Modelling (UK) suggests 70% immunisation coverage of prisoners could achieve 80% reduction in HBV incidence over 12 years in IDU
Hepatitis C - key facts

- 3% of the world’s population infected
- Blood-to-blood transmission
- Injecting drug use and unsafe medical injecting devices
- No well established behavioural prevention strategy
- Clearance in ~30%; chronicity in 70%
- Chronic liver inflammation, progressive fibrosis
- Cirrhosis ~ 5-10% per decade; then liver failure / HCC 2-5% annually
- Antiviral Rx increasingly effective (~50% cured) - arduous, costly
- Direct-acting antivirals offer potential for ‘treatment-as-prevention’
NSW prisoners

- NSW inmate population: ~10,000; ~7% females
- 74% Australian born, 17% non-English background
- Aboriginal: 19%
- Education: 50% < Year 10
- Mental illness: 33% males, 59% females
- Short sentences (incl. remand): 63% males, 76% females <6 mo.
- Recidivism: 70%
NSW prisons

- Predominantly public sector prisons

Facilities:

- 30 correctional centres
- 11 periodic detention centres
- 2 transition centres
- 8 police cell & 7 court cell complexes
- 9 juvenile detention centres

- ~20,000 imprisonments annually
- ~146,000 movements annually
Prevalence of hepatitis B and C in Australian prisons

Table 12 Hepatitis B virus immune status by jurisdiction (2010)†

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>No. tested</th>
<th>No. (%) with no evidence of HBV immunity</th>
<th>No. (%) immune through past exposure</th>
<th>No. (%) HBV carrier</th>
<th>No. (%) vaccine conferred immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACT</td>
<td>1</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>NSW</td>
<td>202</td>
<td>101 (50)</td>
<td>32 (16)</td>
<td>6 (3)</td>
<td>63 (31)</td>
</tr>
<tr>
<td>NT</td>
<td>54</td>
<td>18 (33)</td>
<td>18 (33)</td>
<td>3 (6)</td>
<td>15 (28)</td>
</tr>
<tr>
<td>Qld</td>
<td>107</td>
<td>16 (15)</td>
<td>14 (13)</td>
<td>2 (2)</td>
<td>75 (70)</td>
</tr>
<tr>
<td>SA</td>
<td>33</td>
<td>8 (24)</td>
<td>2 (6)</td>
<td>1 (3)</td>
<td>22 (67)</td>
</tr>
<tr>
<td>Tas</td>
<td>28</td>
<td>16 (57)</td>
<td>5 (18)</td>
<td>0 (0)</td>
<td>7 (25)</td>
</tr>
<tr>
<td>Vic</td>
<td>33</td>
<td>15 (45)</td>
<td>3 (9)</td>
<td>1 (3)</td>
<td>14 (42)</td>
</tr>
<tr>
<td>WA</td>
<td>97</td>
<td>50 (52)</td>
<td>16 (16)</td>
<td>0 (0)</td>
<td>31 (32)</td>
</tr>
<tr>
<td>Total</td>
<td>555</td>
<td>225 (41)</td>
<td>90 (16)</td>
<td>13 (2)</td>
<td>227 (41)</td>
</tr>
</tbody>
</table>

† Excludes equivocal test results and missing values.

Prevalence of hepatitis B and C in Australian prisons

Table 7 Hepatitis C antibody prevalence by jurisdiction and sex (2010)†

<table>
<thead>
<tr>
<th></th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No° tested</td>
<td>No° (%) with HCV</td>
<td>No° tested</td>
</tr>
<tr>
<td>ACT</td>
<td>4</td>
<td>2 (50)</td>
<td>1</td>
</tr>
<tr>
<td>NSW</td>
<td>195</td>
<td>46 (24)</td>
<td>7</td>
</tr>
<tr>
<td>NT</td>
<td>64</td>
<td>3 (5)</td>
<td>3</td>
</tr>
<tr>
<td>Qld</td>
<td>160</td>
<td>29 (18)</td>
<td>28</td>
</tr>
<tr>
<td>SA</td>
<td>26</td>
<td>5 (19)</td>
<td>7</td>
</tr>
<tr>
<td>Tas</td>
<td>29</td>
<td>8 (28)</td>
<td>1</td>
</tr>
<tr>
<td>Vic</td>
<td>25</td>
<td>7 (28)</td>
<td>5</td>
</tr>
<tr>
<td>WA</td>
<td>92</td>
<td>22 (24)</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>595</td>
<td>122 (21)</td>
<td>56</td>
</tr>
</tbody>
</table>

† Excludes equivocal test results and missing values.
Hepatitis C Incidence & Transmission Study (HITS) cohort

- Prospective cohort study enrolling high-risk, HCV uninfected IDU prisoners.
- Subjects followed up at 6 monthly intervals.
- Structured interviews and HCV testing at enrolment (baseline) and each follow-up.
- Sample storage (serum, plasma, PBMCs, DNA)
- Detailed immunological and virological studies in incident cases.
Aims

• To describe risk behaviours for blood borne virus transmission in the prison setting.

• To determine HCV incidence rates in the prison setting.

• To define demographic, behavioural factors, and host immune factors associated with incident infection, and clearance after incident infection.

• To provide a platform for immunological and virological studies of the pathogenesis of primary HCV infection.

• To define HBV incidence and immunisation uptake rates.
Subjects

Inclusion criteria

• ≥ 18 years
• “ever” injected drugs
• anti-HCV Ab negative in last 12 months
• recently imprisoned (<12 mo.)

Exclusion criteria

• insufficient English
• HIV positive
• pregnant
• forensic
Methods

Structured interview:

- Demographics
- IDU risk behaviours (IDU, sharing, drug choice(s))
- Other blood to blood risk behaviours (tattooing, piercing, physical assaults or injuries)
- Taking a break from injecting (break, duration)
- Current treatments for drug dependency, (e.g. methadone maintenance treatment (MMT))

Blood for HCV Ab (ELISA), HCV RNA (Taqman), and storage
Methods - Interview

II. THIS SECTION IS ABOUT RISK FACTORS FOR THE SPREAD OF HEP C SINCE THE LAST INTERVIEW

[Interviewer: Explain that the purpose of the follow-up interview is to record any high risk activities for HCV transmission which have occurred since the last interview – both inside prison and outside (if applicable)].

2. Have you had a tattoo applied?
 Yes (Go to 3) 1
 No (Go to 5) 2
 Don’t recall (Go to 5) 9

3. How many different times have you been tattooed?
 [Interviewer: consider each session of tattooing as a separate tattoo]
 [Interviewer: Include tattoos that have been removed]

4. Were the tattoos done inside or outside of prison?
 Inside 1
 Outside 2
 Both inside and outside 3
 Don’t know 9
Methods - Interview

III. This section is about injecting drug use since the last interview

[Interviewer: Explain that this section is to record the general pattern of IDU since the last interview both inside prison and outside (if applicable)].

21. Since the last interview did you inject drugs?
 - Yes (go to Q14) 1
 - No (go to Q37) 2
 - Don’t recall (go to Q37) 9

22. Since the last interview how often did you inject drugs?
 [Interviewer: resolve an average for the period]
 [Interviewer: check that “daily” and “more than once a day” are distinguished]
 - Less than monthly 1
 - Monthly or more often 2
 - Weekly or more often 3
 - Daily 4
 - More than once a day 5
 - Don’t recall 9

23. Since the last interview, compared to the rest of your life, has your injecting pattern been...
 [Interviewer: assess the lifetime pattern of injecting and code yes if frequency, sharing behaviours or drug of choice have changed]
 - Stable 1
 - Increasing 2
 - Decreasing 3
 - Don’t recall 9

24. Since the last interview, which drugs did you inject? [Interviewer: read the options and emphasise “injecting”]
 - Heroin 1
 - Buprenorphine / Methadone 2
 - Crystal meth/shabu/ice/goey/Amphetamine/Speed/methamphetamine 3
 - GHB/GBH/ liquid e/fantasy 4
 - Cocaine/ Coke 5
 - Benzodiazepines/ Benzos 6
 - Anabolic/Steroids 7
 - Other opiates/morphine/pethidine/omnopon 8
 - Hallucinogens/LSD/ Acid/Magic/Mushies/Dmtura 9
 - Ecstasy/ E/MDA/MDMA 10
 - Ketamine 11
Epidemiological studies

Pre-enrolment negative HCV test

Baseline HCV test

Follow-up HCV tests

Time (mths)

-12 0 6 12 18

Incidence analysis 1 Incidence analysis 2
Results

Demographic and behavioural characteristics at enrolment (n=488)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age yrs (SD)</td>
<td>28 (±6.9)</td>
</tr>
<tr>
<td>Gender (%) male</td>
<td>65%</td>
</tr>
<tr>
<td>Education (%) ≤10 years schooling</td>
<td>76%</td>
</tr>
<tr>
<td>Aboriginal & Torres Strait Islander (%)</td>
<td>25%</td>
</tr>
<tr>
<td>Non-English speaking background (%)</td>
<td>2%</td>
</tr>
<tr>
<td>Previous imprisonment (%)</td>
<td>72%</td>
</tr>
<tr>
<td>Ever had a tattoo (%)</td>
<td>73%</td>
</tr>
<tr>
<td>Mean duration of injecting (years)</td>
<td>8.5 (±6.2)</td>
</tr>
<tr>
<td>Ever shared injecting equipment (%)</td>
<td>63%</td>
</tr>
<tr>
<td>IDU in prison (%)</td>
<td>27%</td>
</tr>
</tbody>
</table>
Incidence analysis 1 - Baseline

- HCV Ab and PCR testing of first 488 inmates enrolled:
 - 94 HCV incident cases
 - Incidence: 31.6 % per annum (p.a.)
 - (Teutsch et al., BMC Public Health 2010)

- HCV Ab and PCR testing of 120 were continuously in prison:
 - 16 incident cases
 - Incidence: 34.2 % p.a.
 - (Dolan et al., Eur J Epidemiology, 2010)
Incidence analysis 2 – Prospective cohort

• Inclusion:
 – HCV Ab and PCR negative at baseline
 – At least one follow-up visit.

• Results:
 – 225 subjects
 – 325 person years of follow-up
 – 40 incident cases:
 o 1 symptomatic
 o 14 genotype 1, 6 genotype 3, 3 other genotypes, 17 unknown
Prospective cohort

Demographic and behavioural characteristics (n=225)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age yrs (SD)</td>
<td>27.2 (±6.5)</td>
</tr>
<tr>
<td>Gender (%) male</td>
<td>73%</td>
</tr>
<tr>
<td>Education (%) ≤10 years schooling</td>
<td>76%</td>
</tr>
<tr>
<td>Aboriginal & Torres Strait Islander (%)</td>
<td>28%</td>
</tr>
<tr>
<td>Non-English speaking background (%)</td>
<td>2%</td>
</tr>
<tr>
<td>Previous imprisonment (%)</td>
<td>72%</td>
</tr>
<tr>
<td>Ever had a tattoo (%)</td>
<td>70%</td>
</tr>
<tr>
<td>Mean duration of injecting yrs (SD)</td>
<td>7.8 (±5.9)</td>
</tr>
<tr>
<td>Ever shared injecting equipment (%)</td>
<td>66%</td>
</tr>
</tbody>
</table>
Conclusions

• High incidence of risk behaviours
 – IDU-related
 – Other blood-to-blood
• Significant HCV incidence (12.3%)
 – Key risks - IDU, heroin
 – No protection from MMT, bleach
• Significant HBV incidence (4.2%)
 – Successful immunisation ~50%
 – Opportunities lost
Acknowledgments

HITS Investigators

Professor Andrew Lloyd (UNSW) Luke McCredie (CHRCJ) Dr Suzy Teutsch (IIRC, UNSW)
Professor Paul Haber (RPAH) Marian Bloomfield (CHRCJ) Dr Fabio Luciani (IIRC, UNSW)
A/Professor Kate Dolan (NDARC) Linda Boonwaat (CHRCJ) Dr Bago Cameron (IIRC, UNSW)
Professor Michael Levy (ANU) Dr Libby Topp (NCHECR) Dr Roseena Bull (IIRC, UNSW)
Professor Bill Rawlinson (POWH) Nick Scheuer (NDARC) Hui Li (IIRC, UNSW)
A/Professor Peter White (UNSW) Brendan Jacka (SEALS) Dr Jeff Post (POWH)
A/Professor Carla Treloar (UNSW) Alice Steller (SEALS) Parisa Hossieny (IIRC, UNSW)
Professor Greg Dore (Kirby) Yong Pan (SEALS) Emma Jagger (IIRC, UNSW)
Professor Lisa Maher (Kirby) Chelsy Willenborg (SEALS) Mirni Hunter (IIRC, UNSW)
Professor John Kaldor (Kirby) Dr Peter Robertson (SEALS) Lisa Elliott (IIRC, UNSW)
A/Professor Rose Ffrench (Burnet) Peter Mugden (IIRC, UNSW)

Staff/Students

Dr Suzy Teutsch (IIRC, UNSW)
Dr Fabio Luciani (IIRC, UNSW)
Dr Bago Cameron (IIRC, UNSW)
Dr Roseena Bull (IIRC, UNSW)
Hui Li (IIRC, UNSW)
Dr Jeff Post (POWH)
Parisa Hossieny (IIRC, UNSW)
Emma Jagger (IIRC, UNSW)
Mirni Hunter (IIRC, UNSW)
Lisa Elliott (IIRC, UNSW)
Peter Mugden (IIRC, UNSW)
Nam Nguyen (IIRC, UNSW)
Dominic Douglas (IIRC, UNSW)

Funding

NHMRC, UNSW Hepatitis C Vaccine Initiative, NSW Health
Careers: Become a Prison Doctor.