Surveillance issues – Perspectives from working for and with WHO

John Tapsall

WHO Collaborating Centre for STD and HIV

The Prince of Wales Hospital Sydney

What are the seven hills of Ancient Rome?

WHO Structure

World Health Assembly annual resolutions

HQ Geneva DG and BOD

• Regional Offices (5) and RD

Country Officers

WHO Funding/Operation

- Member States untied funds UN Agency
- Tied funds directly USAID politics
- External funding also e.g. Gates, tied
- Operate within a country via its government
- Partnerships with NGOs but again with government approval to operate

WHO operations - WHA

- 1990s UN AIDS
- 2000 "Millennium Goals"

TB, HIV, Malaria

UN 'Global Fund'

• 2002 SARS/Avian flu

WHO regard for importance of Anti Microbial Resistance

1998 WHA Assembly resolution on AMR

- AMR included in WHO Millennium Goals
- 2001 WHA Assembly resolution on AMR
 - 2002 WHO WPR resolution on AMR
- AMR considerations required for "Global Fund" esp TB
- 2005 WHA renewed resolution on AMR

Working for or with WHO

- Most HQ personnel are epidemiologists
- Little laboratory background
- Need laboratory based input
- Engage expertise by a variety of means: Technical Services Agreement, Agreement for Performance of Work, reference laboratory, Collaborating Centres for ...

7 hills

• 1 Quirinal

Surveillance for WHO

- Aim is ultimately disease control or a reduction in morbidity and mortality attributable to that disease
 - ANY Surveillance ASK the question What is the aim of this surveillance activity?
- Usually for some intervention i.e.
 - Information for Action

WHO regard for importance of Anti Microbial Resistance

WHA and Regional Office resolutions

• 2005: Member states are asked to report back to WHO in 2007 on progress on AMR containment

Global Strategy Document

- "Global" = totality of the approach, not a geographic term
- "Containment" is the outcome = slowing of the rate of AMR increase. Reversal of existing AMR is even harder to achieve.
- GSD launched in Washington on Sept 11 2001

7 hills

• 2 Viminale

'Global Strategy' 6 key areas

- reduction in disease burden
- access to appropriate antimicrobials
- improved use of antimicrobials
- strengthening health systems and surveillance capabilities
- enforcing regulations and legislation
- encouraging drug and vaccine development

'Global Strategy' Interventions

- 67 recommendations for intervention at national level
- 2 'fundamental' and 12 'priority' interventions evidence and consensus
 - laboratory strengthening and lab based AMR surveillance is one of the two 'fundamental' recommendations

(Simonsen GS et al Bull WHO 2004;82:928)

Human / Animal Infection

Disease Burden **Diagnostics Prescribers Behaviour Consumers Expectations** and Adherence **Rational Drug Use AMR Containment**

Surveillance standards and AMR

- What information is needed?
- What drugs work- for the individual
- at a population level
- What is a cost/effective approach?
- At what level (%) of AMR should a drug regimen be ceased or modified?
- How does one assess this level?

7 hills

• 3 Aesculine

Control of transmissible disease

- Disease rate **Ro**
- depends on **B** c **D**
- \mathbf{B} = transmissibility of organism
- \mathbf{c} = rate of partner, fomite, exchange
- \mathbf{D} = duration of infectiousness
 - For sustained disease control, *all* of the above need to be simultaneously reduced by an integrated approach

Laboratory Contributions to Disease Control Prevention

- Emphasis on
- B, D
- \mathbf{B} = transmissibility of organism
- \mathbf{D} = duration of infectiousness
- For antimicrobials, effective treatment decreases both **B**, **D**
- e.g. Rx of HIV provides inoculum reduction decreases β, but no effect on D

AMR surveillance & standards (WHO)

- <u>BASIC PRINCIPLE</u> to produce <u>valid</u> information for action requires
- 1. Epidemiologically valid sources of data
- 2. Proper microbiological standards
- 3. Statistically valid analyses and interpretation
- 4. Dissemination of analysed data which is integrated into programmatic approaches
 - [COMPARABILITY]
- "Stand alone" surveillance of any kind is ultimately non-sustainable

"Surveillance Standards for AMR" (WHO)

- Monograph with many useful definitions and advice; describes core activities esp for diseases of Public Health relevance
 - LINKS AMR SURVEILLANCE TO DISEASE SURVEILLANCE
- describes surveillance standards, organismdiseases for surveillance (= where AMR contributes significantly to disease control)

AMR surveillance - applications

- <u>Diseases/organisms of PHI</u>: *AMR is an important factor in disease control*
- TB, malaria, HIV,
- diarrhoeal and respiratory disease, STI, IMD, HAI (limits)
- Bird flu and efficacy and continuing efficacy of antivirals in the face of mass prophylaxis and over use

7 hills

• 4 Caelian

1. Epidemiology: Usual sources of AMR data

- Passively collected diagnostic AST data
- Continuous or periodic surveys of AMR from routine diagnostic data
- Directed surveillance: from (sentinel, total) continuous or periodic surveys; semidefined sources which may be non-clinical
- Demographic and clinically linked surveys
- Genotypic data as above (HIV)

(a) Passive, standard testing using diagnostic material: *Pros*

- 'Better than no data'
- 'Cheap to obtain'
- 'Can adjust statistically for source variation'
- Useful to indicate AMR problems and need for enhanced surveillance
- Sometimes useful for trend data over time
- (careful interpretation needed)

(a) Passive, standard AST testing of diagnostic material:Cons

- Denominator deficient and warm inner glow surveillance
- Denominators poorly defined, inconsistent within and between institutions, highly variable over time; need complicated statistical manipulation [comparability]
- Routine data is often biased e.g towards resistance, problem cases

(a) Passive, standard AST testing of diagnostic material:Cons

- passively collected data from multiple sources by many means
- Often lacks comparability within and between sources, wider regions
- applicable often only to source from which it is derived i.e. must be disaggregated
- not possible to integrate with disease data

(b) Comprehensive, integrated, continuous, active

- 'An expensive ideal' (is it really?)
- can be achieved inexpensively in some situations if integrated with other activity e.g. strain characteristics for vaccines, enhanced disease surveillance, programmatic treatments
- *must* be used in some situations TB

[c] Sentinel, (periodic or continuous), active, [integrated]

- Intermediate in approach
- more useful than simple passive data
- epidemiologically better defined
- reliable trend data available on occasion
- can be used comparatively and as an alert for the need for enhanced surveillance
- can often be linked to an integrated disease surveillance programme

7 hills

• 5 Palatine

2. Laboratory aspects

- Many successful efforts over the years in terms of improvement, standardisation
- but wide variation remains (virology)
- exclusion/inclusion: single (first) isolates only (treatment naïve, treatment failure only); carriage vs clinical infection; collection protocols vary
- test method: 6 microbiologists provide 12 variations

2. Laboratory aspects

- Quality Control and Quality Assurance differ; QC often in place, EQAS often not
- International or national reference cultures notably lacking in pooled passive systems
- programme specific EQAS required needs recognition/acceptance
- 'satisfaction' expressed is somewhat misplaced and premature comparability

3. Data interpretation/analysis/distribution

- producing, distributing valid and pertinent 'information for action' is crucial
- Norwegian experience: *microbiological* analysis is the paramount requirement
- surveillance data must be aligned with predefined needs and objectives
- 'data mining' [AAC 2002:46:2409-2419] should be replaced by thoughtful 'farming'

7 hills

• 6 Capitoline

Some bacterial examples: passive, diagnostic AST

- Data mining: TSN, SENTRY, ALEXANDER...
- Often fail on all 3 counts: epidemiologically, methodologically and analytically
- Aggregation of large amounts of poorly defined data amplifies, rather than overcomes, problems

Diseases of Major and Global Importance - WHO

• Global Fund for TB, HIV and Malaria

• "Stop TB" - "DOTS"

DOTS – claimed to cure 94% or more of cases

An example of the 'fully integrated approach to disease control'

"STOP TB" - DOTS

5 elements to DOTS

- Government (political) commitment
- Case detection (e.g. sputum smear microscopy)
- Determine Standardized Rx
 [DOT for 2 month minimum]
- Reliable drug supply [potency, continuity]
- Recording and reporting system for Rx outcomes

Multi-drug-resistant TB DOTS-*Plus*

- MDR-TB isoniazid and rifampicin resistant
- Prolonged [24 mo] Rx needed
- MDR TB > 4% in new TB cases in Eastern Europe, Latin America, Africa and Asia
- <u>Surveillance of AMR in TB</u> required WHO/IUTLD Global Project on AMR in TB
- Problems of MDR-TB *see* 3rd Global Surveillance Report
- Standards, EQAS, comparability, validity

Green Light Committee

- "provides concessionally-priced second-line anti-TB drugs to DOTS-Plus pilot projects meeting requisite standards.
- Currently, prices have been reduced up to 99% compared with the prices in the open market"

Green Light Committee

 DOTS-Plus is being implemented/approved in Bolivia, Costa Rica, Estonia, Haiti, Karakalpakstan (Uzbekistan), Latvia, Malawi, Mexico, Peru, Philippines, parts of the Russian Federation, Honduras, Lebanon and Nepal.

MDR-TB Treatment Regimen Costs

"STOP TB"

- Fully integrated programme
- Focussed on disease control
- Essential Drugs provided so as to maximise outcomes
- Right drugs in the right place
- MDR TB lab surveillance an essential component of STOP TB

Monitoring AMR for Public Health Action - TB

- Epidemiologically sound methods
- Microbiologically sound methods
- Active, integrated AMR Data Analysis and reporting
- Action initiated on the basis of established parameters

7 hills

• 7 Aventine

The issues

- 'AMR surveillance' is a resource with many tools for different applications
- first define objectives, adjust surveillance methods accordingly choose the right tool
- integrate AMR data with disease control programmes for maximum effect
- COST and cost/benefit

Summary

- AMR surveillance is NOT a stand alone, one size fits all, activity
- specific requirements for multiple purposes
- epi, methods, analysis must ALL be in place
- for most public health purposes, specific AMR activity is best performed as modules integrated with their disease based systems

