Transplantation, Immunosuppression, Infection

Viruses in May 2010

Bill Rawlinson

Virology Division, SEALS Microbiology

w.rawlinson@unsw.edu.au
OUTLINE

- Transplant infections donor and recipient
 - Types
 - Pathogenesis
- Diagnosis of transplant infections
 - Laboratory diagnosis
 - Utility of diagnosis
- Emerging issues
 - New agents
 - Donor screening
OUTLINE

- Transplant infections donor and recipient
 - Types
 - Pathogenesis
- Diagnosis of transplant infections
 - Laboratory diagnosis
 - Utility of diagnosis
- Emerging issues
 - New agents
 - Donor screening
SOT – Recipients

- ~1800 Australians on wait list
 - 78% NSW/ACT and Victoria/Tasmania
 - Most kidney, liver
- Hospitalisation post transplant
 - Major reason infection
 - Resistant organism colonization
 - Continuing long term immunosuppression
SOT Infections Occurrence

- Epidemiologic exposure
 - Donor organ
 - Self
 - Hospital environment
 - Community

- Net state of immunosuppression
General Concepts - Recipients

- Increasingly potent immunosuppressive agents reduce rejection
- Increasing patient susceptibility to opportunistic infections and cancer
- Recognition of clinical syndromes (BK nephropathy, Adenovirus, Arenavirus)
- Routine antimicrobial prophylaxis
- Infections due to organisms with antimicrobial resistance
SOT Recipient Infection Types

- **BBV**
 - Herpesviruses (CMV, HSV, EBV, HHV6, HHV8)
 - HIV
 - HCV
 - HBV
 - HTLVI, II
 - Parvovirus
 - BK/JC

- **STI**
 - HPV

- **Emerging**
 - WNV
 - Lyssavirus
 - Arenavirus
 - Antibiotic resistant
 - Antiviral resistant CMV, HCV
The Timeline of Post-transplant Infections

Nosocomial Technical

Oppportunistic, Relapsed, Residual

From Common to rare

Transplantation 4 Weeks 6-12 Months Long-term

Donor-derived infection Nosocomial infection Period of most intensive immune suppression

Common Variables in Immune Suppression
- Rejection, anti rejection therapy, new agents
- Neutropena, lymphopaenia
- Viral coinfection (CMV, HCV, EBV)

[Fishman 2005]
Estimated Number of Persons with Chronic Blood-borne Virus Infections 2000

<table>
<thead>
<tr>
<th>Region</th>
<th>Population millions</th>
<th>Chronic infections (millions)</th>
<th>HIV</th>
<th>HCV</th>
<th>HBV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Africa</td>
<td>749</td>
<td>22.7</td>
<td>22.5</td>
<td>59.3</td>
<td></td>
</tr>
<tr>
<td>Asia</td>
<td>3,585</td>
<td>7.3</td>
<td>107.5</td>
<td>286.8</td>
<td></td>
</tr>
<tr>
<td>Latin America</td>
<td>504</td>
<td>1.7</td>
<td>15.1</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Europe</td>
<td>729</td>
<td>0.8</td>
<td>21.8</td>
<td>10.9</td>
<td></td>
</tr>
<tr>
<td>Oceania</td>
<td>30</td>
<td>0.0</td>
<td>0.9</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>305</td>
<td>0.9</td>
<td>9.1</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5,902</td>
<td>33.4</td>
<td>176.9</td>
<td>371.6</td>
<td></td>
</tr>
</tbody>
</table>

[Margolis CDC]
Main Issues

- High-Risk donors
- Prospective/Retrospective testing
- Ideally universal prospective screening
- False Positives/Negatives
Transplant costs

- Transplant
 - $65,000-$75,000
 - $11,000 ongoing pa

- Post-transplant infection
 - Additional $5,000-$10,000 pa
 - Graft loss
 - Long-term damage
 - Cumulative (CMV → bacteria)
“…they belonged, at any rate, to the lowest and smallest but also to the most fruitful beings known…”

J. Henle 1833
OUTLINE

- Transplant infections donor and recipient
 - Types
 - Pathogenesis
- Diagnosis of transplant infections
 - Laboratory diagnosis
 - Utility of diagnosis
- Emerging issues
 - New agents
 - Donor screening
Pathogenesis
Mechanisms of chronic damage

- Up regulation growth factors
- Growth
 - MHC II upregulation
 - MHC II molecules ↑
 - Adhesion molecules ↑
- Chemokines
 - ↑ IL-2 ↑IL-2R
 - ↑ TNF
 - ↑ IL-6
 - ↑ PDGF + ↑ TGF β smooth
 - Muscle proliferation
CMV Pathogenesis

- Duration of treatment to reduce VL to O depends upon initial VL
- GCV
 - 10mg/kg/d IV 92% efficacy
 - 1g tds po 47% efficacy

[Emery 1999, 2000]
CMV antiviral resistance

- 37% of specimens contain antiviral resistant CMV sequences
- 14% have dual UL97+UL54 mutations
 - Confer multidrug resistance
OUTLINE

• Transplant infections donor and recipient
 ➢ Types
 ➢ Pathogenesis

• Diagnosis of transplant infections
 ➢ Laboratory diagnosis
 ➢ Utility of diagnosis

• Emerging issues
 ➢ New agents
 ➢ Donor screening
Diagnosis

- Optimal methods vary with population

- Serology
 - ELISA IgG, IgM
 - IgG avidity

- Direct detection
 - direct immunofluorescence
 - NAT
 - Q-NAT
 - Quantitative antigenaemia
 - Viral culture
HV Infection HV Disease

- Isolation of the virus from any site or serological evidence
- Primary or Secondary

- Invasive or symptomatic infection with histologic viral cytopathic effect
- Evidence of recent infection + clinical
Limitations of Serological Tests

- Longer window period than NAT
- Do not distinguish between HCV present or past infection
- HBV escape mutants are not detected
- Occult HCV and HBV infections are not detected
Summary of BBV testing at SEALS since October 2009

<table>
<thead>
<tr>
<th>Sample type</th>
<th>No. of donors tested by NAT</th>
<th>No. of organs retrieved</th>
</tr>
</thead>
<tbody>
<tr>
<td>Routine</td>
<td>26</td>
<td>89</td>
</tr>
<tr>
<td>Urgent (High-Risk donor)</td>
<td>10</td>
<td>21*</td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>110</td>
</tr>
</tbody>
</table>

Two donors were rejected: one was HBV NAT Positive, and other was deemed not medically suitable
OUTLINE

- Transplant infections donor and recipient
 - Types
 - Pathogenesis
- Diagnosis of transplant infections
 - Laboratory diagnosis
 - Utility of diagnosis
- Emerging issues
 - New agents
 - Donor screening
Current DDD Transmission Data

152 cases reported in 2009

Reports to DTAC: 2006-2009*

<table>
<thead>
<tr>
<th>Malignancies</th>
<th># of Donor Reports</th>
<th># of Recipients w/ Confirmed Tx</th>
<th># of Attributable Recipient Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renal Cell Carcinoma</td>
<td>60</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Lung – Adenocarcinoma</td>
<td>9</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Non-Hodgkins Lymphoma</td>
<td>6</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Thyroid Cancer</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Melanoma</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Glioblastoma Multiforme</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hepatocellular Cancer</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leukemia (AML, CLL)</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ovarian Carcinoma</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Breast</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neuroendocrine</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pancreatic Adenocarcinoma</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Renal Papillary Adenocarcinoma</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Liposarcoma</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Other</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Totals</td>
<td>121</td>
<td>18</td>
<td>5</td>
</tr>
</tbody>
</table>

*Other (Each are single cases with no transmission): Basaloid, Brain – Spindle Cell, Cholangiocarcinoma, Dermatofibrosarcoma Protuberans, GIST, Kaposi’s Scarcoma, Lung – Bronchoalveolar, Lung – Small Cell, Lymphoma, Myeloid Sarcoma, Urothelial Cell
Reports to DTAC: 2006-2009*

<table>
<thead>
<tr>
<th>Virus</th>
<th># of Donor Reports</th>
<th># of Recipients w/ Confirmed Tx</th>
<th># of Attributable Recipient Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCV*</td>
<td>26</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>HIV†</td>
<td>13</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>HBV</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>West Nile – UPDATE Outcome</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Parvovirus</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Influenza (2 Pandemic)</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>HTLV</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LCMV</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PIV-3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rabies</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Viral Encephalitis</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Viral Illness – Unidentified</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

* All but 3 cases non-reproducible NAT results:
 - Donor not high risk, Sero -/NAT+ with 3 transmissions
 - Donor high risk, Sero -/NAT + with 4 transmissions (HIV/HCV) and 1 death
 - Donor HCV + vessel with 1 transmission

†All but 2 cases non-reproducible NAT results:
 - 1 Case with 4 transmissions of HCV/HIV and 1 death
 - 1 patient with HIV infection post-transplantation
Reports to DTAC: 2006-2009

<table>
<thead>
<tr>
<th>Bacteria</th>
<th># of Donor Reports</th>
<th># of Recipients w/ Confirmed Tx</th>
<th># of Attributable Recipient Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Acinetobacter (2 cases)</td>
<td>25</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>• Brucella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Enterococcus (3 Cases (1 VRE))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• E. coli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Gram Positive Bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Klebsiella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pseudomonas (4 cases)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Serratia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• S. aureus (2 cases, 1 MRSA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Streptococcus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Veillonella</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1 case of bacterial meningitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• 1 case of bacterial emboli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ehrlichia</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Legionella</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Listeria</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lyme Disease</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Nocardia</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Syphilis</td>
<td>7</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Rocky Mountain Spotted Fever</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Other Infections

<table>
<thead>
<tr>
<th>Other Infections</th>
<th># of Donor Reports</th>
<th># of Recipients w/ Confirmed Tx</th>
<th># of Attributable Recipient Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycobacterial Infections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TB</td>
<td>24</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Mycobacteria avium-complex</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mycobacteria kansasii</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fungal Infections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coccidiodomycosis</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Histoplasmosis</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zygomycetes</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Candida spp</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Cryptococcus</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aspergillus</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mycotic Aneurysm</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parasitic Infections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chagas</td>
<td>7</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Strongyloides</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Babesiosis</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>196 + 18\S</td>
<td>54</td>
<td>22</td>
</tr>
</tbody>
</table>

\SExpected Transmissions: 10 Toxoplasmosis, 7, EBV, 4 CMV. Data 1/1/06 – 10/31/09.
Human Cytomegalovirus

- Morbidity and mortality in immunocompromised
 - HIV-AIDS
 - transplant recipients
 - neonates

- SOT infections
 - lung > liver > heart > bowel > kidney

- Allograft injury best evidence linked
 - Heart CAD
 - Lung transplants Bronchiolitis obliterans
CMV risk factors

- CMV serostatus
 - D+/R-
 - D+/R+

- Coinfection
 - HHV6
 - HHV7

- Patient factors
 - HLA mismatch
 - T cell depletion
 - GVHD

- Therapy
 - High dose steroids
 - OKT3
 - Mycophenolate
 - CNI
CMV infection of kidney
CMV infection of lung
Quantitation of CMV

Benefits
- Surrogate measure of resistance
- Better correlation with disease
- Measure of viral load in blood vs other tissue
- Association with prognosis in some diseases
- Simplified sample

Problems
- Cost
- Lack of correlation with some disease
- Lower sensitivity than qualitative
- Availability
- Sample size for testing
QPCR use in transplant recipients

- Initiation of therapy in SCT
 - High risk allogeneic SCT 10,000 c/ml whole blood
 - Preemptive therapy with GCV 5mg/kg/dy
 - Dose escalation of GCV if no response of VL

- Initiation of therapy in renal transplants
 - Lower risk SOT 30,000 c/ml plasma

- Initiation of therapy in liver transplants
 - Moderate risk SOT 1,000 c/ml plasma, PPV 47%, NPV 83%
 - Moderate risk SOT 5,000 c/5x10⁶ cells, PPV 40%, NPV 90%

[Martin-Davila 2005; Rayes 2005; Verkruyse 2006]
OUTLINE

● Transplant infections donor and recipient
 ➢ Types
 ➢ Pathogenesis

● Diagnosis of transplant infections
 ➢ Laboratory diagnosis
 ➢ Utility of diagnosis

● Emerging issues
 ➢ New agents
 ➢ Donor screening
Emerging issues

- Zoonoses
 - WNV
 - Bat lyssavirus
 - Hendra/Menangle/Nipah

- Long-term immunosuppression + cancer
 - EBV
 - Endogenous retrovirus
 - HHV-8
New agents

- Imported infections
 - Dengue
 - New variant CJD
- Unexpected infections
 - Arenavirus
 - Seronegative HIV
 - Seronegative HCV
- Respiratory
 - Negative on routine testing
- Gastrointestinal
 - Negative on routine testing
OUTLINE

- Transplant infections donor and recipient
 - Types
 - Pathogenesis
- Diagnosis of transplant infections
 - Laboratory diagnosis
 - Utility of diagnosis
- Emerging issues
 - New agents
 - Donor screening
Proposals

- Develop and institute pre-transplantation testing guidelines similar to those developed for US and expand those being developed for Australia
- Analysis of sensitivity, specificity and cost-effectiveness of different testing algorithms
- Develop and institute cadaver donor screening protocols
Sources of residual risk

- Infectious, window period donations
 - Time between infectivity and detection with screening tests may be different from time of exposure to an agent
- Viral variants
 - Strains, subtypes
 - Most not detected by current tests
- Infectious chronic antibody negative carriers
- Errors (testing or product release)
Comparative risk in medical procedures
Therapy

- **Antivirals**
 - ganciclovir (bone marrow toxicity)
 - foscarnet (renal toxicity)
 - adefovir
 - prophylaxis with ValGCV, ValACV, GCV, ValGCV

- Pre-emptive therapy
- Primary prophylaxis
- No effective vaccine
CMV antiviral resistance

- 47% CMV antiviral sensitive
- 15% CMV antiviral resistant - UL97
- 15% CMV antiviral resistant - UL97 + UL54
- 23% CMV PCR negative

- 38% of patients harbour antiviral resistant CMV
- 15% have dual UL97+UL54 mutations
Antivirals for resistant CMV

- Foscarnet
- Cidofovir
- Combination therapy
 - GCV 0.5 dose + PFA escalating to 125 mg/kg
 - GCV 0.5 dose + PFA 0.5 dose 90 mg/kg
 - GCV 1.0 dose + CMV IVIG
 - ?more toxic

[Mylonakis 2002; Mattes 2004]
Donor-Derived Infections

- Most are latent (CMV, TB, *T. gondii*)
- Rarely can be acute (Bacteremia/viremia at time of procurement i.e. West Nile, rabies, HIV, hepatitis, LCV)
- The majority of these are subclinical in healthy patients, but can be catastrophic when transplanted into an Immunosuppressed patient
- At present, routine evaluations of donors for infectious diseases relies upon serologic antibody testing, and thus sensitivity is not 100% for those that may not have had time to seroconvert
Donor Screening

- Epidemiologic history
- Serologic testing for VDRL, HIV, CMV, EBV, HSV, VZV, HBV (HBsAg, anti-HBsAg), and HCV
- Microbiologic testing of blood and urine
- Chest radiography
- Known infections (appropriate therapy?)
- Possible infections (e.g., encephalitis, sepsis)
- Special serologic testing, nucleic acid assays, or antigen detection based on epidemiologic factors and recent exposures (e.g., toxoplasma, West Nile virus, HIV, HCV)
NAT testing

- HCV
 - LOD 15 IU/ml (10 cp/ml)
- HIV-1
 - LOD 68 IU/ml (40 cp/ml)
- HBV
 - LOD 12 IU/ml (5 cp/ml)
- 3 Molecular tests run in parallel
- TAT 6-8 hrs
HIV markers during early infection

DT = 21.5 hrs

HIV RNA (plasma)

HIV p24 Ag

HIV Antibody

Theoretical Infectivity

HIV RNA

HIV p24 Ag

HIV Antibody

Day 0

Day 11

Day 16

Day 22

5 Days

6 Days