

Principles of clinical virology

Structure and pathogenesis

Viruses in May 2006

Bill Rawlinson Virology Division, SEALS Microbiology

Viral Disease

- □ Oldest recorded disease (Rabies, polio)
- Modern epidemics/pandemics HIV-AIDS, HCV, SARS, Avian Influenza
- Impact on humans
 - animals
 - plants
 - evolution

- 1. What is a virus
 - Characteristics
 - Structure
 - Replication
 - Definitions
- 2. How viruses cause disease
 - Molecular principles
 - Disease pathogenesis
- 3. Diagnosis of viral illness
 - Principles
 - Methods
- 4. Clinical virology
 - Principles
 - Viral public health issues incl Respiratory, Gastrointestinal, Congenital infections, Blood screening, Hepatitis

1. What is a virus

- Characteristics
- Structure
- Replication
- Definitions
- 2. How viruses cause disease
 - Molecular principles
 - Disease pathogenesis
- 3. Diagnosis of viral illness
 - Principles
 - Methods
- 4. Clinical virology
 - Principles
 - Viral public health issues incl Respiratory, Gastrointestinal, Congenital infections, Blood screening, Hepatitis

A virus is a molecular genetic parasite that uses cellular systems for its own replication

[Villarreal, 2005]

Viruses

- This intimate relationship between the virus and the cell causes several important effects:
- Viruses are not killed by antibiotics
 - Antivirals often damage the cell
 - ▼Viruses can persist in cells either replicating (HIV) or resting latent (HSV)

Viruses

- ☐ Viruses are the simplest organisms, containing DNA or RNA, but not both.
- Prions are similar, but distinct, only contain protein. Original concept was a growing organism like a virus or a human had to contain either DNA or RNA (virus) or both (humans). Prions are the only known exception

Viruses have life

- □ Can be killed
- Can become extinct
- Subject to evolutionary biology

But viruses

- Have no sexual exchange process
- Species is defined by its lineage
- Species is a class that occupies a replicating lineage and occupies an ecological niche

HSE - MRI

HSE

Structure

- not cells
- dependent upon the cell they infect. Inside cells they can replicate, outside cells they can be transmitted, but cannot replicate (grow)
- contain DNA or RNA but not both
- can grow from only virus DNA or RNA inside a cell
- sometimes viruses integrate their nucleic acid into the host cell genome

Virion Architecture

Architecture of virions regardless of host is based on two simple themes:

Sphere – normally in the form icosahedron (cubical)
Best way of producing a shell of equivalently bonded identical structures
Minimum free energy state
Strong structure that can enclose a maximal volume

Helix - cylindrical shape (spiral staircase)

HSV-2 EM

Virion Architecture — icosahedron

An ICOSAHEDRON is composed of 20 facets, each an equilateral triangle, and 12 vertices (corners)

Helical viral structure

Several RNA viruses undergo self assembly as a cylindrical nucleocapsid. (hollow tube)

The vival RNA forms a spiral within the capsid structure

Each capsomer consists of a single protein

Virus replication

Classification

- **Standard levels**
 - **™**Order
 - **≠**Family
 - □ Subfamily
 - □ Genus
 - **■** Species

- ~virales
- ~viridae
- ~virinae
- ~virus

Classification

- □ Classification is based on:
 - Genomic makeup e.g: Caliciviruses
 - ▼ Virion structure EM appearance e.g: HV
 - Replication strategy
 - Virion antigenicity e.g: adenoviruses, serological distinction MVE / JE / WNV
 - Virion chemical characteristics, stability
 - □ Diseases caused in the host e.g. hepatitis

Definitions

Capsid

Protein coat surrounding viral DNA or RNA.

Made up of smaller subunits (capsomers) that self-assemble into symmetrical helices (all of which are enveloped) or icosaherons (with cubical symmetry)

Envelope

Lipoprotein surrounding the nucleocapsid

Ligand

Receptor binding molecule of a virus

Light microscope

Level of resolution is 200 nm, most viruses are <200 nm diameter

Definitions

Prion

Infectious protein, containing no DNA or RNA

Replication

Growth

Virion

Infectious viral particle

Viroid

Simplest virus-like organism, with infectious RNA and no protein coat

Virus

Infectious particle consisting of DNA or RNA, ± protein coat (capsid), ± lipid coat (envelope) cannot be seen with a light microscope of resolution 200 nm

- 1. What is a virus
 - Characteristics
 - Structure
 - Replication
 - Definitions
- 2. How viruses cause disease
 - Molecular principles
 - Disease pathogenesis
- 3. Diagnosis of viral illness
 - Principles
 - Methods
- 4. Clinical virology
 - Principles
 - Viral public health issues incl Respiratory, Gastrointestinal, Congenital infections, Blood screening, Hepatitis

Viruses as a molecule

- ™ Most viruses
 - ≠10 20 genes
 - Genomes 5,000 25,000 bp
- ĭ ICTVdb
 - ₹3,600 species
 - □ 30,000 strains + subtypes

Viruses as a molecule

- I ssRNA most diverse Noro, HCV, HIV
- dsRNA − Rota

Biological characteristics of acute and persistent virus life strategies

- □ Acute virus life strategy
 - No persistence in individual host
 - □ Often disease associated
 - High mutation rates (RNA viruses)
 - Virus replicates in more than one species
 - Virus does not show coevolution with host
 - Transmission is horizontal
 - Highly dependent on host population structure

Biological characteristics of acute and persistent virus life strategies

- □ Persistent virus life strategy
 - Persistent in individual host
 - Seldom causes acute disease; often inapparent
 - Genetically stable
 - Virus is highly species specific
 - Virus often shows coevolution with host
 - Transmission is often from parent to offspring (vertical) or through sexual contact
 - Less dependent on host population structure
 - ☐ Often the source of emerging acute disease in new host species

Viral Syndromes

- □ Adenopathy and glandular fever
- Arthritis
- **Carditis**
- Chronic Fatigue Syndrome
- Congenital and perinatal disease
- **Exanthemata** and skin disease
- □ Gastroenteritis

Viral Syndromes

- □ Haemorrhagic fevers
- Hepatitis
- Immunocompromised infections
- Neurological disease
 - encephalitis and meningitis
- Pancreatitis and diabetes
- Respiratory disease
- □ Sexually Transmitted Infections (STD, STI)

- 1. What is a virus
 - Characteristics
 - Structure
 - Replication
 - Definitions
- 2. How viruses cause disease
 - Molecular principles
 - Disease pathogenesis
- 3. Diagnosis of viral illness
 - Principles
 - Methods
- 4. Clinical virology
 - Principles
 - Viral public health issues incl Respiratory, Gastrointestinal, Congenital infections, Blood screening, Hepatitis

Types of diagnostic test

Diagnostic Methods

- □ Serology retrospective
- # Ag
 - Protein based
 - ▼ IFA (Respiratory)
 - ™ WB (HIV)
 - Protein function (HIV-RT)
- Culture some viruses non-cultivable
- Molecular Molecular

 - HIV RNA, HCV RNA
 - X CMV DNA
- Emerging Microarray different formats, HPLC, Protein amplification

Serology

- **ELISA**, IFA, CFT
- Total (EV, HAV, HCV, HW, Influenza)
- Igm (Adeno, HSV)

 □ Igm (Adeno, HSV)
- IgG (CMV, Mumps, Measles, PVB19 Rubella)

 Rubella
- Complex (HBV, EBV)
- ™No use (Rota, Noro, Variola)

Molecular testing

- Rapid, sensitive, costly (initially)
- **Amplified**
 - Target (PCR, LCR, NASBA, TMA)
- Non amplified
 - Probe based (ISH, Hybrid Capture)

Ag testing

- Existing technique (Respiratory)
- Initial testing (p24)
- □ Only available (Prion)
- □ Dependent upon
 - many host cells in specimen
 - **¤** operator

Tests – emerging techniques

- □ New arrays
- microarray
- optical bead arrays
- protein nanoarrays
- Redevelopment of existing methods
 - quantitation
 - multiplex
 - recombinant targets
 - combined NA-protein
 - interpretation

- What is a virus
 - Characteristics
 - Structure
 - Replication
 - Definitions
- 2. How viruses cause disease
 - Molecular principles
 - Disease pathogenesis
- 3. Diagnosis of viral illness
 - Principles
 - Methods
- 4. Clinical virology
 - Principles
 - Viral public health issues incl Respiratory, Gastrointestinal, Congenital infections, Blood screening, Hepatitis

Epidemics

- **™Measles**
 - Plague of Athens (436 B.C.) described a distemper-like epidemic with high mortality
 - Epidemics Rome, China AD165, AD251
 - Considered a normal process of development
 - □ All adults survivors of childhood infection in Europe

Epidemics

- **□** Smallpox
 - Earliest accounts from India, in Sanskrit medical text, China, 1122 B.C.
 - Entered Europe via Islamic North African expansion to Spain; epidemics in Syria (A.D.302) and Mecca (A.D. 569)
 - Reintroduced to Europe via crusaders
 - □ Disease milder limited to children (Spain in the 1400s)

- - □ Variola (smallpox)

 - □ Ectromelia (mousepox)
- □ Infectious diseases

 - ¤ TB
- □ Viral taxonomy
 □
- □ Prime Minister's Prize (2002)
- Royal Society Copley medal (1996)
- □ Japan Prize for Preventive Medicine (1988)

VIRAL INFECTIONS CHILDREN

Congenital CMV Infection

- Hepatosplenomegaly
- Jaundice
- Microcephaly
- Prematurity
- Chorioretinitis
- Petechiae
- Mental retardation
- Hearing loss

Normal (uninfected) placental tissue

Blood Supply testing

- Ignores persistent non-threatening viruses
- **Constantly** changing
- Role of emerging viruses

Agents of risk - known / tested

HB_sAg

- Sept 1970

- Abbott PRISM

HCVAb

- Feb 1990

- Abbott PRISM

ĦIV 1/2 Ab

- April 1985

- Abbott PRISM

HTLV I/II Ab - Jan 1993

- Abbott PRISM

□ HCV RNA - June 2000

- Pooled 24, TMA Chiron

- Pooled 16, April 2005

HIV 1 RNA - June 2000

- Pooled 24, TMA Chiron

- Pooled 16, April 2005

III CMV - selected

Agents of risk – known / not tested

- **II** CMV
- GB-C virus unknown
- ¥ HHV8
 - few donors
 - theoretical KS
- □ Prions vCJD
 - # few donors
 - transmissible encephalopathy

- SARS coronavirus few donors
- □ TT virus 80-95% of donors
- - 2% of donors
 - types A-H
 - hepatitis

MNV

- # few donors
- □ 3 week deferral process

Agents of risk – known / emerging risk

- □ Dengue deferral procedures for at-risk
- Prions vCJD [Llewellyn, 2004]
 - exclusion
- **SARS** coronavirus
- X WNV
- Unknown

[Chamberland, 2001]

1. What is a virus

- Characteristics
- Structure
- Replication
- Definitions
- 2. How viruses cause disease
 - Molecular principles
 - Disease pathogenesis
- 3. Diagnosis of viral illness
 - Principles
 - Methods
- 4. Clinical virology
 - Principles
 - Viral public health issues incl Respiratory, Gastrointestinal, Congenital infections, Blood screening, Hepatitis

Some Emerging Issues

- □ New respiratory virus SARS
 - ¤ hMPV
 - Associations with chronic conditions
- Transfusion HCV
 - Non A non B non C
 - New viruses (GBV, TTV, Sen V)
- Old viruses re-emerging
- **Zoonoses**
 - **SARS**

 - □ Arenaviruses