Incorporating virologic data into seasonal and pandemic influenza vaccines

Kanta Subbarao

WHO Collaborating Centre for Reference and Research on Influenza & Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity

The haemagglutinin and neuraminidase are the main targets of the protective antibody response

Currently licensed influenza vaccines

<u>Principle</u>: Induction of a protective immune response against the haemagglutinin protein

- Based on serum antibody response to the hemagglutinin (HA) protein
- Offered as trivalent or quadrivalent formulations to cover epidemic influenza A and B viruses
 - Trivalent vaccines contain A/H1N1, A/H3N2 and one B strain
 - Quadrivalent vaccines contain A/H1N1, A/H3N2, B Yamagata-lineage and B Victoria-lineage viruses.

Antigenic Drift

- Gradual alteration of the influenza surface proteins (mainly HA) within a subtype, resulting in the inability of antibody to previous strains to neutralize new viruses.
- Antigenic drift results from point mutations in the HA and NA genes.
- The composition of the influenza vaccine has to be updated annually as a consequence of antigenic drift.

Key principles underlying licensed influenza vaccines

- Influenza vaccines mediate protection through antibody directed at the haemagglutinin (HA). Therefore, antigenic drift often necessitates an update in the vaccine composition.
- Antigenic changes are the result of genetic drift, which can be monitored by sequencing the HA but genetic drift doesn't always lead to antigenic change.
- >95% of the global vaccine supply is manufactured in embryonated eggs

WHO GISRS network

Oldest network in WHO: begun in 1952, 144 NIC's in 114 countries, 5 WHO CC's for human influenza + 1 for animal influenza + 4 essential regulatory labs,

A variety of information is used to select influenza vaccine viruses

Comparative titres by haemagglutination inhibition & VN assays

Sequence data

- HA & NA
- Some full genome

Antiviral drug resistance

- Oseltamivir
- Zanamivir
- Other compounds

Also used

- Epi data
- Vaccine effectiveness data
- Human Serology
- Structural data
- Modellers predictions

Candidate vaccine viruses (CVV's)

Other information

Growth in eggs/qualified cells

WHO vaccine strain recommendation process

A WHO committee meets twice a year to recommend suitable strains to be included in the vaccine for the upcoming influenza season:

- northern hemisphere winter (decided in February)
- southern hemisphere winter (decided in September)

Surveillance and vaccine candidate data are compiled and shared between WHO Collaborating Centres.

A vaccine strain change is recommended only if the following are widely observed amongst circulating viruses:

Antigenic changes

Marked changes in the antigenic profile in 2-way HI assays compared with previous vaccine strains

Sequence changes

Changes in HA gene sequences, especially at known antigenic and receptor-binding sites

Availability of suitable candidate vaccine strains

Serology changes

Poor recognition by serum panels from human recipients of the previous vaccine

National authorities make the final decision for their country. Vaccine production takes about 6 months

WHO prototype vaccine viruses 2000-2017 (egg isolates)

Vaccine composition recommended for 2018/2019 seasons

2018 Southern hemisphere

- H1N1pdm09:
 A/Michigan/45/2015-like
- H3N2: A/Singapore/INFIMH 16-0019/2016-like*

Quadrivalent vaccine:

B/Yam: B/Phuket/3073/2013-like B/Vic: B/Brisbane/60/2008-like

Trivalent vaccine:

B/Yam: B/Phuket/3073/2013-like*

* Changed from 2017 recommendations

2018/19 Northern hemisphere

- H1N1pdm09:
 A/Michigan/45/2015-like
- H3N2: A/Singapore/INFIMH 16-0019/2016-like*

Quadrivalent vaccine:

B/Yam: B/Phuket/3073/2013-like B/Vic: B/Colorado/06/2017-like*

Trivalent vaccine:

B/Vic: B/Colorado/06/2017-like*

* Changed from 2017/2018 recommendations

Key challenges with seasonal influenza vaccines

Antigenic drift necessitates an update in the vaccine composition

- Challenge: About 50% of A/H3N2 viruses cannot be isolated or characterised in HAI tests
- Potential solution: A focus reduction assay (FRA) as an alternative to the HAI assay - but it is not high throughput

Genetic drift

 Challenge: Enormous genetic diversity with several clades and subclades co-circulating but few clades are associated with antigenic difference in HAI assays

H3N2 HA - globally

- Currently circulating H3N2 viruses are genetically very diverse and several clades are circulating in varying proportions around the world
- 3C2a1 have a least 5 clades co-circulating
- 3C2a viruses outside this group have at least 3 clades currently circulating

Key challenges with seasonal influenza vaccines

Manufacture in embryonated eggs

- Challenge: Adaptation to growth in eggs induces mutations in the HA. Part of the antibody response to egg-grown vaccines can be directed against egg-adaptation changes that are not present in cell-grown viruses
- Potential solutions:
 - Isolate and characterise more egg isolates in order to select viruses without signature egg-adaptation changes for vaccine development
 - Cell grown vaccine
 - Recombinant HA vaccine

Antigenic analysis of virus isolates: Australia May-Sept 2017

Influenza strain	Assay	Number of viruses	Cell propagated reference strain	
			Like	Low- reacting
A/H1N1pdm09	HAI	46	46	0
A/H3N2	HAI	90	60	7
	FRA		31	0
A/H3N2: Insufficient titer for HAI	FRA	98	44	0
B/Victoria lineage	HAI	6	3	1
B/Yamagata lineage	HAI	90	52	0

Sullivan et al *Eurosurveillance* 2017: 22(43): pii=17-00707

Antigenic analysis of virus isolates: Australia May-Sept 2017

Influenza strain	Assay	Number of viruses	Cell propagated reference strain			ted reference ain
			Like	Low- reacting	Like	Low- reacting
A/H1N1pdm09	HAI	46	46	0	46	0
A/H3N2	HAI	90	60	7	45	22
A/H3INZ	FRA	90	31	0	28	0
A/H3N2: Insufficient titer for HAI	FRA	98	44	0	32	12
B/Victoria lineage	HAI	6	3	1	0	4
B/Yamagata lineage	HAI	90	52	0	50	2

Sullivan et al *Eurosurveillance* 2017: 22(43): pii=17-00707

Interim vaccine effectiveness: Australia May-Sept 2017

Type/ subtype	Cases (test positive)		Controls (test negative)		Adjusted VE	95% CI
	Unvaccinated	Vaccinated	Unvaccinated	Vaccinated		
A or B	772 (73%)	288 (27%)	802 (63%)	477 (37%)	33%	17 to 46
A/H1N1 pdm09	74 (84 %)	14 (16%)	802 (63%)	477 (37%)	50%	8 to 74
A/H3N2	347 (66%)	175 (34%)	802 (63%)	477 (37%)	10%	-16 to 31
B/Vic	11 (100%)	0 (0%)	802 (63%)	477 (37%)	Not es	stimated
B/Yam	206 (80%)	53 (20%)	802 (63%)	477 (37%)	45%	22 to 62

Sullivan et al *Eurosurveillance* 2017: 22(43): pii=17-00707

The 1918 'Spanish Flu' Pandemic

I saw hundreds of young stalwart men in uniform coming into the wards of the hospital. Every bed was full, yet others crowded in. The faces wore a bluish cast; a cough brought up the blood-stained sputum. In the morning, the dead bodies are stacked about the morque like cordwood.

Victor Vaughn, US Surgeon General, 1918

Cycle of Influenza A viruses

Distribution of influenza A haemagglutinin subtypes in nature

Distribution of influenza A neuraminidase subtypes in nature

N1		N 813					Se .	
N2	9	K K3				1	Se .	
N3						- A	The same	
N4							See .	
N5				A			S. Comments	
N6							S.	
N7			200	A	A.D.		1	
N8			200				The same	
N9						T	Sep.	
N10								Tu
N11								1

Direct Infection of Humans with Avian Influenza Viruses

Year	Country	Subtype/pathotype	Cases	Fatalities
1959	US	H7N7 HPAI	1	0
1978-79	US	H7N7 LPAI	?	0
1996	England	H7N7 LPAI	1	0
1997	Hong Kong	H5N1 HPAI	18	6
1999	China	H9N2 LPAI	5	0
1999, 2003	Hong Kong	H9N2 LPAI	3	0
2002-03	US	H7N2 LPAI	2	0
2003	Hong Kong	H5N1 HPAI	5	2
2003	Netherlands	H7N7 HPAI	89	1
2004	Canada	H7N3 HPAI	2	0
2004	Egypt	H10N7 LPAI	2	0
2003-2017	16 countries	H5N1 HPAI	860	454
2013-2017	China	H7N9 LPAI	1625	623
2014	Taiwan	H6N1 LPAI	1	0
2014	China	H10N8 LPAI	3	2
2014-2017	China	H5N6 HPAI	16	6

Sources: Perdue & Swayne (2005) Avian Dis 49:317 and EID Weekly Updates (2004) 2(18), 2, WHO, FAO

Goal of a Pandemic Influenza Vaccine

To prevent severe illness and death from pandemic influenza and it's complications.

An ideal influenza vaccine will

- induce a systemic and mucosal immune response directed at the HA, NA and conserved internal proteins of the virus
- protect against a broad range of influenza viruses, within a subtype and across subtypes

3 Options for Pandemic Influenza Vaccines

Option A	Option B	Option C
Conventional Approach	Enhance the breadth of cross reactivity	The 'game changer' Approach
Strain Specific Vaccines	Subtype Specific Vaccines	Universal Vaccine

The Conventional Approach: Strain-specific vaccines

- Principle: Elicit strain-specific immunity
- Goal:
 - Prepare a library of <u>Candidate Vaccine Viruses</u> (CVVs)
 - Encourage vaccine manufacturers to develop experience working with CVVs

Process:

- Monitor genetic and antigenic drift in nature through surveillance
- Determine when antibody elicited against previous CVVs fail to cross-react with drift variants
- Prepare a new CVV

Caveat:

Clinical trials are largely supported by the US government

The Diversity of H5N1 viruses

Influenza and Other Respiratory Viruses 8: 384-388; 2014

Alternative Approaches

- Principle: Elicit broadly cross-reactive subtype-specific immunity
- Goal:
 - Enhance the cross-reactivity of the Ab response
- Processes:
 - Oil-in-water adjuvants
 - Whole virion vaccines
 - Combine vaccine platforms
 - Select different viruses for development of CVVs
 - Select among existing influenza viruses
 - Select antigenically advanced variants
 - An ancestral/computationally optimized broadly reactive HA
 - Multivalent vaccine e.g. VLPs expressing different HAs
 - Combinations of antigens e.g. NP + M1 \pm HA or T cell epitope vaccine + HA

Targets

- Hemagglutinin
 - Head
 - Stem
- Neuraminidase
- M2
- NP + M1
- T cell based protection

- Sequential immunization with chimeric HAs with novel heads on a conserved stem
- A stable trimeric HA stem
- HA stem nanoparticles
- Bacterially expressed re-folded stem peptide

The challenges of universal influenza vaccine development

Technical challenges:

- Identify targets that are conserved across a wide range of influenza viruses
- Develop a vaccine strategy to induce an immune response that is
 - Sufficiently robust to confer protection
 - Elicited at the appropriate site (serum/mucosal antibody, pulmonary T cells)
 - Without adverse effects e.g. immunopathology

Regulatory challenges:

Immune correlates of protection and assays to measure them

Implementation:

– Who should be vaccinated, when and how often?

What does the future hold?

- Continued vigilance to identify antigenic drift and antigenic shift events
- More cell based influenza vaccine components and vaccines
- Adjuvants to increase the immunogenicity of influenza vaccines
- High dose vaccines for the elderly
- New platforms e.g. virus like particles
- Universal influenza vaccines that elicit broad immunity against a range of influenza viruses and subtypes

The WHO Collaborating Centre for Reference and Research on Influenza in Melbourne is supported by the Australian Government Department of Health