

Hepatitis C Virus Infection in Pregnancy

Mother to Infant Transmission

Stephen Riordan

Gastrointestinal and Liver Unit
Prince of Wales Hospital and
Prince of Wales Clinical School, UNSW
Sydney, Australia

Hepatitis C Virus

- •Mainly parenteral transmission
 - -Blood product transfusions prior to 1990, IVDU, tattoos
- As with HBV, liver injury immune-mediated
- •70% develop chronic liver disease (15% cirrhosis over 20 yr)
- •Risk of hepatocellular carcinoma
 - -Especially if cirrhosis
 - -Incidence 1-6% annually
 - -M>F (around 6:1)

Chronic Hepatitis C

•In the order of 0.2 - 0.5% of Australian population chronically infected

Over 70% IV drug users infected

Commonest indication for liver transplantation

HCV Infection in Pregnancy

Maternal Implications

- I. General
- II. Natural history in pregnancy and early post-partum

Neonatal Implications

- I. Fetal outcome
- II. Mother to infant transmission (MIT)
- III. Natural history of MIT-acquired HCV infection

Maternal Implications I. General — Gestational Diabetes

Increased incidence with maternal HCV infection

-HCV-associated insulin resistance

- » Pergam SA, et al. Am J Obstet Gynecol 2008;199:38
- » Buresi MC, et al. J Obstet Gynaecol Can 2010;32:935-941
- » Reddick KL, et al. J Viral hepat 2011;18:e394-e398

I. General Cholestasis of Pregnancy

- Increased incidence with maternal HCV infection
- Onset earlier in pregnancy
- Cholestasis of pregnancy in
 - 10/63 (5.9%) HCV +ve mothers
 - 135/16,208 (0.8%) HCV -ve mothers (P<0.001)
 - » Locatelli et al, BJOG 1999;106:498-500
 - » Paternoster et al, Acta Obstet Gynecol Scand 2002;81:99-103
 - Generally managed effectively with the bile acid, ursodeoxycholic acid

Maternal Implications II. Natural History

- HCV RNA levels generally increase towards end of pregnancy
 - Reduced Th1-type cellular immunity
 - Watanable M, et al. Am J Reprod Immuniol 1997;37:368-377
 - Expansion of CD4+, CD25+ Treg cells
 - Aluvihare VR, et al. Nat Immunol 2004;5:266-271
- Liver enzyme levels generally improve (or even normalise) during 2nd and 3rd trimesters
- Disease flare may occur post-partum, with reconstitution of cellular immunity to pre-pregnancy state/surge in HCVspecific CD4+ and CD8+ responses
 - Honegger J, et al. Proc 47th Annual Meeting Inf Dis Soc Am, 2009
 - In concert with reduction in HCV load
 - 9% spontaneous resolution of viraemia
 - Hattori Y, et al. 2003;71:205-211

Maternal Implications II. Natural History

- Nonetheless, anti-HCV immunity not completely suppressed in pregnancy...
- Both humoral and cell-mediated immune responses directed against HCV antigens occur throughout pregnancy
 - E2, p7, NS2, NS3, ARFP
 - Troesch M, et al. AIDS 2005;19:775-784
- Evolution of HCV quasispecies throughout pregnancy indicates on-going selective immune pressure on specific regions of E2
 - HVR1, HVR3
 - Troesch M, et al. Virology 2006;352:357-367

Imfant Implications I. Fetal Outcome

- Increased incidences
 - Premature rupture of membranes
 - Pre-term delivery
 - Placental abruption
 - Low birth weight
 - Congenital malformations
 - Overall perinatal mortality
 - » Safir A, et al. Liver Int 2010;30:765-770
 - » Connell LE, et al. Liver Int 2011;DOI:1111/j.1478-3231.2011.02556.x
- Other earlier, smaller studies showed no increased risk
 - » Floreani A, et al. BJOG 1996;103:325-329
 - » Jabeen T, et al. QJM 2000;93:597-601

Infant Implications II. Mother to Infant Transmission

Magnitude of Problem

-170 million worldwide chronically infected

If 35% are women of child-bearing age and annual fertility rate 2%

60,000 newborn babies will be infected with HCV each year

Infant Implications II. Mother to Infant Transmission

- In utero or peri-partum?
 - Infection early in utero accounts for at least some cases
 - Detection of HCV RNA in some infants as early as 24 hours after delivery
 - Presence of HCV variants in some infants that are not contemporaneous with maternal HCV quasispecies at birth
 - Around one third of MIT instances may occur early in utero and one half late in utero/intra-partum
 - » Resti M, et al. BMJ 1998;317:437-441
 - » Pollack H, et al. J Acquir Immune Defic Synd 2004;36:890-899
 - » Le Campion A, et al. Viruses 2012;4:3531-3550

Infant Implications II. Mother to Infant Transmission

- Mechanism(s) of In Utero Transmission
 - Via placenta, as amniotic fluid –ve for HCV RNA
 - » Delamare C, et al. 1999;31:416-420
 - Placental expression of several HCV receptors and entry cofactors on placenta (claudin-1, occludin, SR-B1, LDLr and DC-SIGN) supports hypothesis of direct infection, as recently shown in vitro using human cytotrophoblasts, leading to marked ultrastructural changes/reduced barrier function
 - » Dye JF, et al. Placenta 2001;22:32-43
 - » Ethier-Chiasson M, et al. Biochem Biophys Res Comm 2007;359:8-14
 - » Soilleux EJ, et al. J Immunol 2000;165:2937-2942
 - » Nie QH, et al. J Med Virol 2012;84:1586-1592
 - Conversely, placental NK and NK T cells activated as a potential mechanism by which placenta may prevent MIT
 - » Waasdorp Hurtado CW, et al. PLoS One 2010;5:e12232

- Maternal Viral Level
 - Most studies report instances of MIT only at HCV RNA levels >6 X 10⁵ copies/mL
 - But broad overlap in levels of plasma HCV RNA above this threshold between transmitting and non-transmitting mothers
 - » Indolfi G, et al. J Med Virol 2009;81:836-843
 - » Le Campion A, et al; Viruses 2012;4:3531-3550

- Rates among HCV RNA +ve / HIV -ve mothers (at around 36 months)
 - 5.6% (Italian)
 - 6.9% (Japanese)

cf around 15% at birth

- -3.1% (other)
- Rates among HCV RNA +ve / HIV +ve mothers
 - 3-4 fold increase
 - Co-infection increases the odds by 90%
 - Meta-analysis of 10 studies
 - » Papaevangelou V, et al. J Infect Dis 1998;178;1047-1052

- Mechanism(s) by which HIV co-infection enhances
 MIT rate of HCV unclear
 - Higher maternal HCV levels not consistently shown
 - » Zanetti AR, et al. Lancet 1995;345:289-291
 - » Conte D, et al. Hepatology 2000;31:751-755
 - ? HIV-induced immune suppression of HCV-specific immunity at materno-foetal interface
 - ? Impaired integrity of placental barrier due to HIV related chorio-amnionitis
 - » Kwiek JJ, et al. PLoSMed 2006;3:e10
 - ?HIV-facilitated HCV entry and replication in PBMC's
 - » Blackard JT. J Infect Dis 2005;192:258-265

- MIT may be related to maternal PBMC infection with HCV
 - +ve strand HCV RNA found in PBMC's of 13/13 mothers who transmitted infection cf 13/53 of mothers who did not (P<0.0001)
 - -ve strand HCV RNA found in PBMC's of 5/13 and 0/53 cases, respectively (P<0.001)
 - » Azzari C, et al. Blood 2000;96:2045-2048

Infant Implications II. Mother to Infant Transmission – Lack of Available Preventative Strategies

- Unlike in HBV setting, pharmacological prevention of MIT not possible currently
 - Pegylated IFN and ribavirin contraindicated in pregnancy
 - A number of directly-acting anti-viral drugs becoming available in the non-pregnancy setting (boceprevir, telaprevir, etc)
- Similarly, no immunoglobulin or vaccine available for baby from birth

Amniocentesis

	Studies identified No. subjects	Summary
Amniocentesis	1 cohort study * n=10	Cohort study of second trimester amniocentesis showed no instances of MIT in the 10 babies tested
	1 case report **	Case of MIT following second trimester amniocentesis, but potential confounding factors could not be excluded

^{*} Delamare C, et al. J Hepatol 1999;31:416-420

^{**} Minola E, et al. Hepatology 2001;33:1341-1342

Labour Management

	Studies identified* No. subjects	Summary
Internal foetal monitoring versus Not	3 cohort studies n=928	Three studies (two good quality) report inconsistent results – no significant difference in two and increased risk of MIT in one of the good quality studies (adjusted OR 6.7, 95% CI 1.1-36)
Prolonged membrane rupture (>6 hours) versus Shorter duration	2 cohort studies n=245	Both studies (one good quality, the other poor quality) found association between longer duration of rupture of membranes and risk of MIT (adjusted OR 9.3, 95% CI 1.5-180 in the good quality study)

Mode of Delivery

	Studies identified* No. subjects	Summary
Elective caesarean versus Vaginal delivery	4 cohort studies n=2080	The two good quality studies found no statistically significant difference in MIT rates
Any caesarean versus Vaginal delivery	11 cohort studies n=2308	10/11 studies (one good quality) found no statistically significant difference in MIT rates

^{*} to May 2012 Cottrell EB, et al. Ann Intern Med 2013;158:109-113

Breast Feeding

	Studies identified* No. subjects	Summary
Breast feeding versus No breast feeding	14 cohort studies n=2971	All 14 studies found no significant association between breast feeding and risk of MIT

* to May 2012

Cottrell EB, et al. Ann Intern Med 2013;158:109-113

Infant Implications III. Natural History of HCV Infection Acquired by MIT

- Spontaneous clearance influenced by non-genotype 1 and IL28B genotype
 - Chronic infection rate 17% for CC genotype, 78% for non-CC genotype
 » Ruiz-Extremera A, et al. Hepatology 2011;53:1830-1838
- As in adults, most chronically-infected children are asymptomatic
 - Natural history similar to that when infection is acquired in adulthood (indolent in most)
 - Trials of directly-acting anti-viral drugs underway
- Report of a child with MIT-acquired HCV with high levels of circulating HCV RNA despite remaining sero-negative up to 10 years of age
 - Analogous to vertically-acquired HBV infection: neonatal tolerance/longterm sero-negativity/chronic viral persistence
 - » Larouche A, et al. J Clin Microbiol 2012;50:2515-2519